中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小型涡扇发动机多工况下气态污染物与颗粒物排放特征

赵静波 王睿 韩博 邓甜 马思萌 韩斌

赵静波, 王睿, 韩博, 邓甜, 马思萌, 韩斌. 小型涡扇发动机多工况下气态污染物与颗粒物排放特征[J]. 环境工程, 2024, 42(12): 145-154. doi: 10.13205/j.hjgc.202412018
引用本文: 赵静波, 王睿, 韩博, 邓甜, 马思萌, 韩斌. 小型涡扇发动机多工况下气态污染物与颗粒物排放特征[J]. 环境工程, 2024, 42(12): 145-154. doi: 10.13205/j.hjgc.202412018
ZHAO Jingbo, WANG Rui, HAN Bo, DENG Tian, MA Simeng, HAN Bin. EMISSION CHARACTERISTICS OF GASEOUS POLLUTANTS AND PARTICULATE MATTER FROM A SMALL TURBOFAN ENGINE UNDER MULTIPLE OPERATING CONDITIONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 145-154. doi: 10.13205/j.hjgc.202412018
Citation: ZHAO Jingbo, WANG Rui, HAN Bo, DENG Tian, MA Simeng, HAN Bin. EMISSION CHARACTERISTICS OF GASEOUS POLLUTANTS AND PARTICULATE MATTER FROM A SMALL TURBOFAN ENGINE UNDER MULTIPLE OPERATING CONDITIONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 145-154. doi: 10.13205/j.hjgc.202412018

小型涡扇发动机多工况下气态污染物与颗粒物排放特征

doi: 10.13205/j.hjgc.202412018
基金项目: 

国家自然科学基金"基于航空发动机台架的飞机云凝结核排放因子研究"(42305104)

中央高校基本科研业务费"中国民航飞机碳排放测算及减排策略研究"(3122021059)

国家自然科学基金"多源数据与模型驱动的机场大气污染排放精准评估关键技术研究"(U2133206)

详细信息
    作者简介:

    赵静波(1989-),男,讲师,主要研究方向为民航环境与绿色发展。jbzhao@cauc.edu.cn

    通讯作者:

    韩博(1982-),男,教授,主要研究方向为民航环境与绿色发展。bhan@cauc.edu.cn

EMISSION CHARACTERISTICS OF GASEOUS POLLUTANTS AND PARTICULATE MATTER FROM A SMALL TURBOFAN ENGINE UNDER MULTIPLE OPERATING CONDITIONS

  • 摘要: DGEN380发动机作为专为喷气式公务机设计的小型涡扇发动机,其气态污染物和颗粒物的排放特性值得探究。于2023年12月23日测试了该发动机在多种工况条件(包括10%、30%和45%推力)下的运行情况。结果显示:1)随着推力的增加,NO和NOx的排放因子显著增加,而NO2和CO的排放因子则呈降低趋势。10%推力下颗粒物的粒径整体呈双峰分布,在20,100 nm处达到峰值,且其总数量浓度为30%和45%推力下的3.4~3.9倍。不同粒径段颗粒物组分中,Na、Mg、Fe、S和Cu元素的排放因子较高,其总和在不同推力下占比均超过80%。碳质组分中有机碳3(OC3)占比最高(25.67%~56.56%),其含量随发动机推力变化而变化;而元素碳(EC)含量在各推力下均较为稳定。3)离子组分以SO2-4、NO-3和Cl-为主,在各推力下的平均排放因子为0.24~1.60 mg/kg。4)通过对污染物排放浓度与发动机参数进行逐步回归分析发现,CO排放的主要影响因素是燃烧室进口平均温度,NO和NOx排放浓度与滑油流量呈正相关,而颗粒物排放与燃烧室进口平均温度及进口压强均呈负相关。研究结果为喷气式公务机污染物排放特征评估提供数据基础,为通航机场大气污染防治提供参考。
  • [1] 袁远, 吴琳, 邹超, 等. 天津机场飞机污染排放及其特征研究[J]. 环境工程, 2018, 36(9): 81-86

    ,58.
    [2] YU J L, SHAO C F, XUE C Y, et al. China’s aircraft-related CO2 emissions: decomposition analysis, decoupling status, and future trends[J]. Energy Policy, 2020, 138: 111215.
    [3] 韩博, 石依琳, 纪翔, 等. 典型通航飞机PM与TVOC排放特征及排放因子[J]. 中国环境科学, 2023, 43 (4): 1550-1557.
    [4] DURDINA L, BREM B T, SCHÖNENBERGER D, et al. Nonvolatile particulate matter emissions of a business jet measured at ground level and estimated for cruising altitudes[J]. Environmental Science & Technology, 2019, 53(21): 12865-12872.
    [5] HU S, FRUIN S, KOZAWA K, et al. Aircraft emission impacts in a neighborhood adjacent to a general aviation airport in Southern California[J]. Environmental Science & Technology, 2009, 43(21): 8039-8045.
    [6] CHEN L F, LIANG Z R, LIU H Y, et al. Sensitivity analysis of fuel types and operational parameters on the particulate matter emissions from an aviation piston engine burning heavy fuels[J]. Fuel, 2017, 202: 520-528.
    [7] 盛久江, 王飞, 李霞,等. 涡桨飞机 VOCs 排放特征的质子迁移反应飞行时间质谱 (PTR-TOF-MS)分析[J]. 环境科学学报, 2021, 41(5): 1784-1791.
    [8] YU Z H, LISCINSKY D S, FORTNER E C, et al. Evaluation of PM emissions from two in-service gas turbine general aviation aircraft engines[J]. Atmospheric Environment, 2017, 160: 9-18.
    [9] TRAN S, BROWN A, OLFERT J S. Comparison of particle number emissions from in-flight aircraft Fueled with Jet A1, JP-5 and an alcohol-to-jet fuel blend[J]. Energy & Fuels, 2020, 34(6): 7218-7222.
    [10] BENAVIDES A, BENJUMEA P, CORTÉS F B, et al. Chemical composition and low-temperature fluidity properties of jet fuels[J]. Processes, 2021, 9(7): 1184.
    [11] International Civil Aviation Organization (ICAO). Annex 16-Environmental Protection-Volume Ⅱ-Aircraft Engine Emissions[J]. Montr é al:International Civil Aviation Organization,2017.
    [12] 张子祎, 刘保双, 孟赫, 等. 青岛市港口区域PM2.5污染特征及来源解析研究[J]. 环境科学学报, 2022, 42(11): 293-307.
    [13] BASHTANI J, SEDDIGHI S, BAHRABADI-Jovein I. Control of nitrogen oxide formation in power generation using modified reaction kinetics and mixing[J]. Energy, 2018, 145: 567-581.
    [14] TANBAY T, UCA M B, DURMAYAZ A. Assessment of NO<em>x emissions of the Scimitar engine at Mach 5 based on a thermodynamic cycle analysis[J]. International Journal of Hydrogen Energy, 2020, 45(5): 3632-3640.
    [15] CERINSKI D, VUJANOVIC M, PETRANOVIC Z, et al. Numerical analysis of fuel injection configuration on nitrogen oxides formation in a jet engine combustion chamber[J]. Energy Conversion and Management, 2020, 220: 112862.
    [16] International Civil Aviation Organization (ICAO). ICAO aircraft engine emissions databank[EB/OL].2021,https://www.easa.europa.eu/domains/environment/icao-aircraft-engine-emissions-databank.
    [17] IODICE P, SENATORE A, LANGELLA G, et al. Effect of ethanol-gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: an experimental investigation[J]. Applied Energy, 2016, 179: 182-190.
    [18] KINSEY J S, DONG Y J, WILLIAMS DC, et al. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1-3[J]. Atmospheric Environment, 2010, 44(17): 2147-2156.
    [19] DELHAYE D, OUF F X, FERRY D, et al. The MERMOSE project: characterization of particulate matter emissions of a commercial aircraft engine[J]. Journal of Aerosol Science, 2017, 105: 48-63.
    [20] LIANG Z R, YU Z H, ZHANG C, et al. IVOC/SVOC and size distribution characteristics of particulate matter emissions from a modern aero-engine combustor in different operational modes[J]. Fuel, 2022, 314: 122781.
    [21] KINSEY J S, TIMKO M T, HERNDON S C, et al. Determination of the emissions from an aircraft auxiliary power unit (APU) during the Alternative Aviation Fuel Experiment (AAFEX)[J]. Journal of the Air & Waste Management Association, 2012, 62(4): 420-430.
    [22] SCHRIPP T, ANDERSON B E, BAUDER U, et al. Aircraft engine particulate matter emissions from sustainable aviation fuels: results from ground-based measurements during the NASA/DLR campaign ECLIF2/ND-MAX[J]. Fuel, 2022, 325: 124764.
    [23] DURDINA L, BREM B T, SETYAN A, et al. Assessment of particle pollution from jetliners: from smoke visibility to nanoparticle counting[J]. Environmental Science & Technology, 2017, 51(6): 3534-3541.
    [24] CORBIN J C, MENSAH A A, PIEBER S M, et al. Trace metals in soot and PM2.5 from heavy-fuel-oil combustion in a marine engine[J]. Environmental Science & Technology, 2018, 52(11): 6714-6722.
    [25] TURGUT E T, AÇIKEL G, GAGA E O, et al. A comprehensive characterization of particulate matter, trace elements, and gaseous emissions of piston-engine aircraft[J]. Environmental Science & Technology, 2020, 54(13): 7818-7835.
    [26] PIERCE D, HAYNES A, HUGHES J, et al. High temperature materials for heavy duty diesel engines: historical and future trends[J]. Progress in Materials Science, 2019, 103: 109-179.
    [27] KINSEY J S, HAYS M D, DONG Y, et al. Chemical characterization of the fine particle emissions from commercial aircraft engines during the aircraft particle emissions experiment (APEX) 1 to 3[J]. Environmental Science & Technology, 2011, 45(8): 3415-3421.
    [28] DUAN J C, TAN J H, WANG S L, et al. Roadside, urban, and rural comparison of size distribution characteristics of PAHs and carbonaceous components of Beijing, China[J]. Journal of Atmospheric Chemistry, 2012, 69(4): 337-349.
    [29] 沈嵩, 刘蕾, 温维, 等. 北京及周边地区夏季PM2.5中含碳组分污染特征与来源解析[J]. 环境工程, 2022, 40(2): 71-80.
    [30] WATSON J G, CHOW J C, LOWENTHAL D H, et al. Differences in the carbon composition of source profiles for diesel-and gasoline-powered vehicles[J]. 1994, 28(15): 2493-2505.
    [31] 王成, 曹靖原, 段小琳, 等. 山西省四城市冬季PM2.5中碳质组分特征及来源分析[J]. 环境工程, 2021, 39(6): 114-121.
    [32] JI D S, ZHANG J K, HE J, et al. Characteristics of atmospheric organic and elemental carbon aerosols in urban Beijing, China[J]. Atmospheric Environment, 2016, 125: 293-306.
    [33] YAN C Q, ZHENG M, SHEN G F, et al. Characterization of carbon fractions in carbonaceous aerosols from typical fossil fuel combustion sources[J]. Fuel, 2019, 254: 115620.
    [34] HAN Y, CHEN Y J, AHMAD S, et al. High time- and size-resolved measurements of PM and chemical composition from coal combustion: implications for the EC formation process[J]. Environmental Science & Technology, 2018, 52(11): 6676-6685.
    [35] 韩博, 姚婷玮, 王立婕, 等. 天津机场区域大气NO2及O3影响因子研究[J]. 中国环境科学, 2020, 40(6): 2398-2408.
    [36] BIAN H S, CHIN M, HAUGLUSTAINE D A, et al. Investigation of global particulate nitrate from the AeroCom phase Ⅲ experiment[J]. Atmospheric Chemistry and Physics, 2017, 17(21): 12911-12940.
  • 加载中
计量
  • 文章访问数:  12
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-26
  • 网络出版日期:  2025-01-18

目录

    /

    返回文章
    返回