DEHYDRATION PERFORMANCE OF SLUDGE DURING FREEZE-THAW CYCLE AND ANALYSIS BASED ON COMSOL MULTIPHYSICS HYDROTHERMAL COUPLING
-
摘要: 污泥经过缓慢冻结后再解冻,通常会大大改善自身的脱水性能。基于冻融循环法对城市污泥脱水效果进行了考察,采用响应曲面法,以污泥冻融温度(℃)、冻融时长(h)及冻融次数(次)为因变量,污泥含水率(%)为响应值,通过Box-Behnken中心组合设计法建立数学模型。结果显示:当冻融温度为-16.30 ℃,冻融时长为19.70 h和冻融次数为19次时,模型预测的最小污泥含水率为33.93%,模型R2>0.99,模型吻合度较好,说明响应曲面法用于优化冻融循环过程中调理污泥理化性质,改善脱水性能是可行的。污泥内部的水热过程是影响污泥资源化利用以及水资源利用的重要因素,传统的水热耦合理论模型忽略了非饱和介质中水分对流传热作用,在水分场与温度场耦合理论模型的数值实现上仍有困难。通过有限元模拟软件建立污泥冻融循环模型,以实验数据为基础,通过COMSOL Multiphysics的数学模块,实现考虑冰水相变和水分对流的温度场和水分场偏微分方程的耦合求解,分析了污泥水分对流与温度变化的关系。并通过场发射扫描电镜分析冻融前后污泥絮体微观结构和孔隙变化,为污泥冻融处理在优化污泥脱水性能方面的应用提供依据。COMSOL Multiphysics的PDE模块可以较好地模拟冻融循环条件下污泥水-热耦合过程,考虑冰水相变以及水分对流迁移影响,为污泥资源化利用以及水资源利用相关数值模拟研究提供参考。Abstract: Sludge is slowly frozen and then thawed, which usually greatly improves the dewatering performance of the sludge. In this paper, the dewatering effect of urban sludge was investigated based on the freeze-thaw cycle method. The response surface method was used, taking the sludge freeze-thaw temperature (℃), freeze-thaw duration (h), and freeze-thaw time (n) as the dependent variables, and the sludge moisture content (%) as the response value, and a mathematical model was established by the Box-Behnken central combination design method. The results showed that when the freeze-thaw temperature was -16.30 ℃, the freeze-thaw time was 19.70 h, and freeze-thaw for 19 cycles, the minimum sludge moisture content predicted by the model was 33.93%, and the model R2>0.99, indicating that the response surface method was feasible to optimize the physical and chemical properties of the regulated sludge during the freeze-thaw cycle to improve its dewatering performance. The hydrothermal process inside the sludge is an important factor affecting the utilization of sludge and water resources. The traditional hydrothermal coupling model ignores the water’s effect on heat transfer in the unsaturated medium, and it is still difficult to realize the numerical value of the coupling theoretical model between the water field and temperature field. The sludge freeze-thaw cycle model was established through the finite element simulation software. Based on the experimental data, the coupling of ice-water phase transition and partial differential equation of water convection was solved, and the relationship between sludge water convection and temperature change was analyzed. The microstructure and pore changes of sludge flocs was analyzed by scanning electron microscope (SEM). It provides a basis for freeze-thaw treatment in optimizing sludge dewatering performance. The results show that COMSOL software can realize flexible definitions of sludge and hydrothermal parameters, ice water phase change latent heat and boundary conditions, and can realize hydrothermal field coupling analysis.
-
[1] 李亚林,白霜,郝馨,等.电渗透/过硫酸盐耦合污泥脱水及能耗分析[J].应用化工,2017,46(6):1103-1107. [2] WEI H, REN J, LI A M, et al. Sludge dewaterability of a starch-based flocculant and its combined usage with ferric chloride[J]. Chemical Engineering Journal,2018,349:737-747. [3] 甘永平,饶祎,姚兵,等.高压脉冲电解-压滤联合实现城市污泥深度脱水[J].环境工程,2019,37(3):13-16,39. [4] 夏加华,饶汀,季娟,等.氧化-絮凝调理对剩余污泥脱水性能的影响[J].土木与环境工程学报(中英文),2023,45(3):173-182. [5] WU Y, ZHANG P Y, ZHANG H B, et al. Possibility of sludge conditioning and dewatering with rice husk biochar modified by ferric chloride[J]. Bioresource Technology,2016,205:258-263. [6] CAO B D, ZHANG T, ZHANG W J, et al. Enhanced technology based for sewage sludge deep dewatering: a critical review[J]. Water Research, 2021, 189: 116650. [7] 叶新合,刘军伟,策红军,等.物理调理法改善污泥脱水性能研究进展[J].工业水处理,2022,42(8):51-59. [8] SANTOS SÍLVIA C R, BACELO HUGO A M, BOAVENTURA RUI A R, et al. Tannin-adsorbents for water decontamination and for the recovery of critical metals: current state and future perspectives[J]. Biotechnology Journal, 2019,14(12):1900060. [9] XU Q H, WANG Y L, JIN L Q, et al. Adsorption of Cu (Ⅱ), Pb (Ⅱ) and Cr (Ⅵ) from aqueous solutions using black wattle tannin-immobilized nanocellulose[J]. Journal of Hazardous Materials,2017,339(Oct.5): 91-99. [10] HARLAN R L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resources Research,1973,9(5):1314-1323. [11] 尚松浩,雷志栋,杨诗秀.冻结条件下土壤水热耦合迁移数值模拟的改进[J]. 清华大学学报(自然科学版),1997,(8):64-66, 104. [12] 陈飞熊,李宁,徐彬.非饱和正冻土的三场耦合理论框架[J]. 力学学报,2005(2):204-214. [13] 周家作,李东庆,房建宏,等.开放系统下饱和正冻土热质迁移的数值分析[J]. 冰川冻土,2011,33(4):791-795. [14] ANDREW F, SCOTT P, STEVE W L, et al. Non-isothermal, three-phase simulations of near-surface flows in a model permafrost system under seasonal variability and climate change[J]. Journal of Hydrology, 2011,403(3/4):352-359. [15] 薛珂,温智,张明礼,等.土体冻结过程中基质势与水分迁移及冻胀的关系[J]. 农业工程学报,2017,33(10):176-183. [16] 师玮,刘少博,张华峰.基于水渗流和热对流传导耦合模型的冻土热量传输[J]. 干旱区研究, 2017, 34(2):274-281. [17] 张明礼,温智,薛珂,等.斜坡渗流对青藏公路多年冻土路基温度场的影响[J]. 公路, 2016, 61(7):13-19. [18] 顾海奇,林伟雄,周佳丽,等.响应曲面法优化污泥基吸附剂处理含铅选矿废水的实验条件[J].环境工程学报, 2020, 14(10):2751-2760. [19] MA J Y, CHEN F F, XUE S X, et al. Improving anaerobic digestion of chicken manure under optimized biochar supplementation strategies[J]. Bioresource Technology, 2021, 325:124697. [20] ZHOU R J, ZHANG M, LI J Y, et al. Optimization of preparation conditions for biochar derived from water hyacinth by using response surface methodology (RSM) and its application in Pb2+ removal[J]. Journal of Environmental Chemical Engineering,2020,8(5):104198. [21] TAYLOR G S, LUTHIN J N. A model for coupled heat and moisture transfer during soil freezing[J]. Canadian Geotechnical Journal, 1978, 15(4):548-555. [22] 白青波.附面层参数标定及冻土路基水热稳定数值模拟方法初探[D]. 北京:北京交通大学,2016. [23] 徐学祖, 邓友生.冻土中水分迁移的实验研究[M]. 北京:科学出版社, 1991. [24] NING L, WILLIAM J L.非饱和土力学[M]. 北京:高等教育出版社, 2012. [25] ZHANG M L, WEN Z, XUE K,et al.A coupled model for liquid water, water vapor and heat transport of saturated-unsaturated soil in cold regions: model formulation and verification[J]. Environmental Earth Sciences,2016,75:701.
点击查看大图
计量
- 文章访问数: 13
- HTML全文浏览量: 3
- PDF下载量: 0
- 被引次数: 0