PREPARATION OF A LEAF-PVDF MATERIAL AND INVESTIGATION OF ITS OIL-ABSORBING PROPERTY
-
摘要: 目前物理吸附法是治理海洋石油污染的重要技术手段。作为研究热点的生物质吸附材料中的生物质泡沫因具有高孔隙率和丰富三维结构,有着广阔应用前景。但一些生物质泡沫的制备方法复杂,制备过程需要使用有毒有机溶剂。故采用简单、绿色的牺牲模板法,使用真空干燥箱在180 ℃下使得PVDF粉末熔化将NaCl颗粒和树叶粉包裹,再水洗去除NaCl模板,形成多孔结构,成功制备了树叶-PVDF多孔海绵材料。该材料在空气中的水接触角为121°,对各种密度<0.9 g/cm3的油或有机溶剂的饱和吸收容量在350%~540%。该材料还具有良好的机械性能,在15次压缩后仍能保持88%的原始高度。在室温下通过挤压回收水面浮油时,0.35 g材料可以在10 min内回收4.28 g油,回收后水面变澄清,没有明显的泵油残留。Abstract: At present, physical adsorption is an important technical means for marine oil pollution. Biomass adsorbent materials in the research hotspot of biomass foam have a broad application prospect because of their high porosity and rich 3-dimensional structure, but some biomass foams are complicated to prepare and the preparation process requires toxic organic solvents. In this study, a simple and green sacrificial template method was used. The leaf-PVDF porous sponge material was prepared by letting the PVDF powder melt at 180 ℃ to encapsulate the NaCl particles and leaf powder, and then washing to remove the NaCl template to form a porous structure. The water contact angle of the material in the air is 121°, and the saturated absorption capacity of various oils or organic solvents with a density of less than 0.9 g/cm3 is 350%~540%. The material also has good mechanical properties, maintaining 88% of its original height after 15 compression cycles. When the oil slick on the water surface is recovered by extrusion at room temperature, 4.28 g of pump oil can be recovered within 10 min from 0.35 grams of material, and the water surface becomes clear after recovery, and there is no obvious pump oil residue.
-
Key words:
- PVDF /
- biomass /
- green process /
- 3D porous material /
- oil absorption
-
[1] LIAO G, LI X, WANG R, et al. Pollution risk assessment of oil spill accidents in the Liao-Dong Bay of China[C]//Proceedings of 2022 4th International Conference on Environment Sciences and Renewable Energy. Environmental Science and Engineering. Springer, Singapore. [2] ITOPF. Oil Tanker Spill Statistics 2022[EB/OL]. 2023-10-10.https://www.itopf.org/knowledge-resources/data-statistics/statistics/. [3] CHEN J H, DI Z J, SHI J, et al. Marine oil spill pollution causes and governance: a case study of Sanchi tanker collision and explosion[J]. Journal of Cleaner Production, 2020, 273:122978. [4] 顾美娟. 漏油污染及含油废水处理研究进展[J]. 现代盐化工, 2021, 48(3): 1-2. [5] 杜国勇, 杨月, 王永红. 含油废水吸附处理技术研究综述[J]. 应用化工, 2021, 50(9): 2490-2495. [6] 谈哲哲, 朱光玥, 刘超,等. 生物质材料用于油品泄漏应急处置的研究进展[J]. 工业安全与环保, 2023,50(3): 71-74. [7] YANG Y H, LUO H, YANG H M, et al. Polyacrylonitrile/natural loofah sponge with spider web structure as a novel platform for enhanced oil adsorption[J]. Journal of Polymer Science, 2021, 59(13): 1456-1466. [8] LU Y Q, WANG Y, LIU L J, et al. Environmental-friendly and magnetic/silanized ethyl cellulose sponges as effective and recyclable oil-absorption materials[J]. Carbohydrate Polymers, 2017, 173: 422-430. [9] CHEN F Z, LU Y, LIU X, et al. Table salt as a template to prepare reusable porous PVDF-MWCNT foam for separation of immiscible oils/organic solvents and corrosive aqueous solutions[J]. Advanced Functional Materials, 2017, 27(41):1702926. [10] TIAN Y Y, MA H Z. Solvent-free green preparation of reusable EG-PVDF foam for efficient oil-water separation[J]. Separation and Purification Technology, 2020, 253:117506. [11] JIANG R, BIAN T T, ZHENG X D, et al. Corrosion-resistant porous hydrophobic PVDF-CBC foam for the treatment of oil-water separation[J]. Materials Chemistry and Physics, 2021, 273:125080. [12] WU D, HU S Y, LU B B, et al. Waste to treasure: superwetting foam enhanced by bamboo powder for sustainable on-demand oil-water separation[J]. J Hazard Mater, 2023, 441: 129829. [13] 赵起越. Nb微合金化低合金高强度钢在模拟海水中腐蚀疲劳行为及机理研究[D]. 北京: 北京科技大学, 2023. [14] PARBAT D, DAS A, MAJI K, et al. Hydrophobicity or superhydrophobicity—which is the right choice for stabilizing underwater superoleophilicity?[J]. Journal of Materials Chemistry A, 2020, 8(1): 97-106. [15] LI J, XU C C, GUO C Q, et al. Underoil superhydrophilic desert sand layer for efficient gravity-directed water-in-oil emulsions separation with high flux[J]. Journal of Materials Chemistry A, 2018, 6(1): 223-230. [16] 刘小浩. 聚偏氟乙烯复合材料多孔薄膜的制备与表征[D]. 成都: 西南交通大学, 2016. [17] 冯汇, 戎媛, 王晓萱,等. 聚偏二氟乙烯δCH2三级中红外光谱研究[J]. 纺织科学与工程学报, 2021, 38(2): 40-47, 53. [18] 石国贵. 以废弃物为原料的超浸润材料制备及其油水分离性能研究[D]. 兰州: 西北师范大学, 2021. [19] 余鹏祥. 废弃水稻秸秆的改性及其在油水分离和重金属离子吸附中的应用[D]. 合肥: 安徽大学, 2021. [20] 张豪. 聚酰胺-胺基改性PVDF膜的制备及其油水分离性能研究[D]. 镇江: 江苏大学, 2022. [21] 范云鸽, 李燕鸿, 马建标. 交联聚苯乙烯型多孔吸附剂的中孔性质研究[J]. 高等学校化学学报, 2002, 23(8): 1622-1626. [22] 钱敏, 吴缨. 梧桐叶生物质炭的制备、表征及吸附性能研究[J]. 安徽化工, 2020, 46(4): 25-32, 37. [23] 何余生, 李忠, 奚红霞,等. 气固吸附等温线的研究进展[J]. 离子交换与吸附, 2004, 20(4): 376-384. [24] 宁连超, 韩雅欣, 李群星,等. 废弃口罩改性制备油水分离吸附材料[J]. 环境工程, 2023, 41(3): 172-178. [25] OUYANG D, LEI X T, ZHENG H L. Recent advances in biomass-based materials for oil spill cleanup[J]. Nanomaterials, 2023, 13(3): 620.
点击查看大图
计量
- 文章访问数: 11
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0