ADSORPTION PERFORMANCE AND MECHANISM OF SULFAMETHOXAZOLE BY ACID/ALKALI MODIFIED CANNA INDICA BIOCHARS
-
摘要: 以美人蕉为原料通过热解制备生物炭,并通过HNO3和KOH对其浸渍改性制备了酸、碱改性生物炭,采用扫描电镜、比表面积及孔径分析仪和傅里叶红外光谱对制备的生物炭进行表征,研究了生物炭对磺胺甲噁唑(SMX)的吸附性能和机理,同时考察了pH值和生物炭投加量对SMX吸附效果的影响。结果表明:相较于未改性生物炭,酸碱改性后生物炭比表面积大幅提高,孔道结构更加发达,吸附性能显著提升。3种生物炭对SMX的吸附过程均符合准二级动力学模型;未改性和碱改性生物炭的等温吸附符合Freundlich模型,酸改性生物炭吸附等温线更符合Langmuir模型。吸附热力学表明,3种生物炭对SMX的吸附均为自发的吸热过程。pH值和生物炭投加量对3种生物炭吸附SMX的效果影响显著。吸附过程受到孔隙填充、氢键、π-π EDA以及静电相互作用的共同影响。Abstract: In this paper, biochar was prepared by pyrolysis with Canna indica as raw material, and then modified with HNO3 and KOH, respectively. The structures and properties of the biochar were characterized by using scanning electron microscopy (SEM), specific surface area and porosity analyzer (SSAP), and Fourier transform infrared spectroscopy (FTIR). The adsorption performance and mechanism of sulfamethoxazole (SMX) by biochars were investigated, and the effects of pH and biochar dosage on the adsorption of SMX were investigated as well. The results showed that compared with the unmodified biochar, the specific surface area of acid/alkali modified biochar was greatly increased, the pore structure was deeply developed, and the adsorption performance was significantly improved. The adsorption process of SMX by the biochar follows the pseudo-second-order kinetics model; the Langmuir model can describe the adsorption isotherm of SMX onto acid-modified biochar better, but adsorption process one the unmodified and alkali modified biochar fit better with the Freundlich model. The adsorption process of SMX by the biochar was endothermic and spontaneous. pH and the dosage of biochar added has a significant effect on the adsorption of SMX by the biochar. The adsorption process was jointly influenced by pore filling, hydrogen bonding, π-π EDA, and electrostatic interactions.
-
Key words:
- Canna indica /
- biochar /
- sulfamethoxazole /
- acid/alkali modified /
- adsorption mechanism
-
[1] ROSI-MARSHALL E J, KELLY J J. Antibiotic stewardship should consider the environmental fate of antibiotics[J]. Environmental Science & Technology, 2015, 49: 5257-5258. [2] LANGBEHN R K. Antibiotics in wastewater: from its occurrence to the biological removal by environmentally conscious technologies[J]. Environmental Pollution, 2021, 275: 11603.1-11603.16. [3] 朱珊珊, 冯传哲, 黄辉, 等.磺胺类药物在水中的分布及去除技术研究进展[J]. 环境科学与技术, 2021, 44(4): 64-71. [4] KARKMAN A, DO T T, WALSH F, et al. Antibiotic-resistance genes in waste water[J]. Trends in Microbiology, 2018, 26(3): 220-228. [5] 高荣, 尹笑宇, 侯森, 等. 磺胺甲噁唑降解与污染防治技术进展[J]. 水处理技术, 2023, 49(11): 8-12. [6] ULLAH F, JI G, IRFAN M, et al. Adsorption performance and mechanism of cationic and anionic dyes by KOH-activated biochar derived from medical waste pyrolysis[J]. Environmental Pollution, 2022, 314: 120271. [7] 李晓娇, 杨建丽, 曹凯红, 等. 小粒咖啡果壳生物炭对水中磺胺噻唑吸附性能研究[J]. 工业水处理, 2023, 43(4):130-138. [8] LI Q, YU W, GUO L W, et al. Sorption of Sulfamethoxazole on Inorganic Acid Solution-Etched Biochar Derived from Alfalfa[J]. Materials, 2021, 14: 1033. [9] 刘总堂, 孙玉凤, 费正皓, 等. 氢氧化钾改性玉米秸秆生物炭对水中土霉素的吸附特性及机制[J/OL]. 环境科学, 1-15[2023-12-16] https://doi.org/10.13227/j.hjkx.202302120. [10] CHO S, LEE S, KIM Y, et al. Applications of agricultural residue biochars to the removal of toxic gases emitted from chemical plants: a review[J]. Science of the Total Environment, 2023: 868. [11] 陈志良, 袁志辉, 黄玲, 等. 生物炭来源、性质及其在重金属污染土壤修复中的研究进展[J]. 生态环境学报, 2016, 25(11): 1879-1884. [12] XING W M, HAN Y G, GUO Z F, et al. Quantitative study on redistribution of nitrogen and phosphorus by wetland plants under different water quality conditions[J]. Environmental Pollution, 2020, 261: 114086. [13] SONG U, PARK H. Importance of biomass management acts and policies after phytoremediation[J]. Journal of Ecology and Environment, 2017, 41: 1-6. [14] 何琦, 曹凤梅, 卢少勇, 等.挺水植物生物炭对硫丹的吸附及催化水解作用[J].中国环境科学, 2018, 38(3): 1126-1132. [15] ZHAO H, WANG Z, LIANG Y H, et al. Adsorptive decontamination of antibiotics from livestock wastewater by using alkaline-modified biochar[J]. Environmental Research, 2023, 226: 115676. [16] 刘寒冰, 杨兵, 薛南冬. 酸碱改性活性炭及其对甲苯吸附的影响[J]. 环境科学, 2016, 37(9): 3670-3678. [17] 李靖. 不同源生物炭的理化性质及其对双酚A和磺胺甲噁唑的吸附[D]. 昆明:昆明理工大学, 2014. [18] 熊青月, 韩志勇, 吴杰, 等. 改性花生壳生物炭对四环素的吸附性能研究[J]. 化学与生物工程, 2023, 40(3): 49-57. [19] HUANG X M, CHEN T H, ZOU X H, et al. The adsorption of Cd(Ⅱ) on manganese oxide investigated by batch and modeling techniques[J]. International Journal of Environmental Research and Public Health, 2017, 14(10): 1145. [20] MARIANA M, MISTAR E M, ALFATAH T, et al. High-porous activated carbon derived from Myristica fragrans shell using one-step KOH activation for methylene blue adsorption[J]. Bioresource Technology Reports, 2021, 16: 100845. [21] 余剑, 丁恒, 张智霖, 等.改性菱角壳生物炭吸附水中土霉素性能与机理[J]. 中国环境科学, 2021, 41(12): 5688-5700. [22] 彭章, 龚香宜, 熊武芳, 等.改性生物炭对萘的吸附效果与机理[J]. 生态与农村环境学报, 2021, 37(8): 1080-1088. [23] 钟来元, 廖荣骏, 刘付宇杰, 等. KOH改性花生壳生物炭对盐酸四环素的吸附性能及其机理[J]. 农业环境科学学报, 2023, 42(9): 2038-2048. [24] 李蕊宁, 王兆炜, 郭家磊, 等. 酸碱改性生物炭对水中磺胺噻唑的吸附性能研究[J]. 环境科学学报, 2017, 37(11): 4119-4128. [25] RAJAPAKSHA A U, VITHANAGE M, ZHANG M, et al. Pyrolysis condition affected sulfamethazine sorption by tea waste biochars[J]. Bioresource Technology, 2014, 166: 303-308. [26] LIU S, XU W H, LIU Y G, et al. Facile synthesis of Cu(Ⅱ) impregnated biochar with enhanced adsorption activity for the removal of doxycycline hydrochloride from water[J]. Science of the Total Environment, 2017, 592: 546-553. [27] SEWU D, BOAKYE P, WOO S. Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste[J]. Bioresource Technology, 2017, 224: 206-213. [28] LIU B X, CHEN T, WANG B, et al. Enhanced removal of Cd2+ from water by AHP-pretreated biochar: adsorption performance and mechanism[J]. Journal of Hazardous Materials, 2022, 438: 129467. [29] MENG Q M, ZHANG Y L, MENG L. Removal of sulfadiazine from aqueous solution by in-situ activated biochar derived from cotton shell[J]. Environmental Research, 2020, 191: 110104. [30] CAI S, ZHANG Q, WANG Z Q, et al. Pyrrolic Nrich biochar without exogenous nitrogen doping as a functional material for bisphenol A removal: performance and mechanism[J]. Applied Catalysis B: Environmental, 2021, 291: 120093. [31] AFSHIN S, RASHTBARI Y VOSOUGH, M. et al. Application of Box-Behnken design for optimizing parameters of hexavalent chromium removal from aqueous solutions using Fe3O4 loaded on activated carbon prepared from alga: kinetics and equilibrium study[J]. Journal of Water Process Engineering, 2021, 42: 102113. [32] 胡伟, 牛耀岚, 董堃, 等. 甘蔗渣生物炭对典型抗生素的去除机理研究[J]. 水处理技术, 2022, 48 (11): 52-56, 61. [33] ZHANG H Y, WANG Z W, LI R N, et al. TiO2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices[J]. Chemosphere, 2017, 185: 351-360. [34] BHATTACHARYA K, PARASAR D, MONDAL B, et al Mesoporous magnetic secondary nanostructures as versatile adsorbent for efficient scavenging of heavy metals[J]. Scientific Reports, 2015, 5: 17072. [35] LIAN F, SUN B B, SONG Z G, et al. Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole[J]. Chemical Engineering Journal, 2014, 248: 128-134. [36] XIE M X, CHEN W, XU Z Y, et al. Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions[J]. Environmental Pollution, 2014, 186: 187-194. [37] LIAN F, SUN B B, SONG Z G, et al. Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole[J]. Chemical Engineering Journal, 2014, 248: 128-134. [38] 沈博.磁性石墨化生物炭活化过硫酸盐催化降解磺胺甲噁唑的去除性能及机理研究[D]. 长沙:湖南大学, 2020. [39] CICEK F, DURSUN O, AHMET O, et al. Low cost removal of reactive dyes using wheat bran[J]. Journal of Hazardous Materials, 2007, 146(1): 408-416.
点击查看大图
计量
- 文章访问数: 12
- HTML全文浏览量: 3
- PDF下载量: 0
- 被引次数: 0