中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交通碳排放核算、模拟及影响因素研究进展

崔倩 周志祥 官冬杰 薛钰倩

崔倩, 周志祥, 官冬杰, 薛钰倩. 交通碳排放核算、模拟及影响因素研究进展[J]. 环境工程, 2025, 43(1): 31-41. doi: 10.13205/j.hjgc.202501004
引用本文: 崔倩, 周志祥, 官冬杰, 薛钰倩. 交通碳排放核算、模拟及影响因素研究进展[J]. 环境工程, 2025, 43(1): 31-41. doi: 10.13205/j.hjgc.202501004
CUI Qian, ZHOU Zhixiang, GUAN Dongjie, XUE Yuqian. Research progress on accounting, modeling and influencing factors of transportation carbon emissions[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 31-41. doi: 10.13205/j.hjgc.202501004
Citation: CUI Qian, ZHOU Zhixiang, GUAN Dongjie, XUE Yuqian. Research progress on accounting, modeling and influencing factors of transportation carbon emissions[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 31-41. doi: 10.13205/j.hjgc.202501004

交通碳排放核算、模拟及影响因素研究进展

doi: 10.13205/j.hjgc.202501004
基金项目: 

国家社会科学基金后期项目“长江经济带生态补偿与经济增长耦合关系、运作机理及实现路径研究”(20FJYB035)

国家自然科学基金项目“城市蔓延对生态系统服务流动路径的影响机理和扩散效应”(42171298)

详细信息
    作者简介:

    崔倩(1983-),女,硕士,高级工程师,主要研究方向为交通碳排放、城市规划。cuiqian@cqjtu.edu.cn

    通讯作者:

    周志祥(1958-),男,博士,教授,主要研究方向为智慧城市交通、桥梁新结构和智慧监测。zhixiangzhou@szu.edu.cn

Research progress on accounting, modeling and influencing factors of transportation carbon emissions

  • 摘要: 在城市化进程加速与基础设施持续建设的背景下,交通行业所引发的碳排放已成为制约全球可持续发展的关键问题。系统性回顾了2019—2024年交通碳排放领域的主要文献成果,从宏观尺度和公路运输层面深入剖析该领域的研究进展、现状挑战及发展趋势。研究指出:交通碳排放研究呈显著增长态势,以碳排放清单核算、模拟研究、影响因素和政策评估作为主要研究切入点;“自上而下”是主要的测算方法,研究模型趋向于多模型融合与模型创新;社会经济指标作为核心考量因素,对交通碳排放具有显著影响,交通结构优化与技术创新被视为降低碳排放的有效途径。政策引导可有效降低碳排放,加强城市交通建设管理、推动碳排放交易市场的建立与完善是政策制定的主要方向。交通碳排放研究应进一步聚焦城镇化背景下的碳排放特征、可视化动态仿真技术,并深化对多元化、全要素影响因素的综合分析,为实现更加精准、高效的交通碳减排策略提供理论支撑与实践指导。
  • [1] CHELLY A, NOUIRA I, FREIN Y, et al. On the consideration of carbon emissions in modelling-based supply chain literature: the state of the art, relevant features and research gaps[J]. International Journal of Production Research, 2019, 57(15/16): 4977-5004.
    [2] HEIDARI E, BIKDELI S, MANSOURI M R M. A dynamic model for CO2 emissions induced by urban transportation during 2005—2030, a case study of Mashhad, Iran[J]. Environment, Development and Sustainability, 2022, 25(5): 4217-4236.
    [3] 罗文蓉, 车慧正, 苗世光, 等. 城市碳通量监测研究进展[J]. 环境工程, 2023, 41(10): 230-244.

    LUO W R, CHE H Z, MIAO S G, et al. Research progress of urban carbon flux monitoring[J]. Environmental Engineering, 2023, 41(10):230-244.
    [4] 戢晓峰, 白淑敏, 陈方, 等. 效率视角下省域交通碳排放配额分配研究[J]. 干旱区资源与环境, 2022, 36(4): 1-7.

    JI X F, BAI S M, CHEN F, et al. Allocation of provincial transportation carbon emission quota from the perspective of efficiency[J]. Journal of Arid Land Resources and Environment, 2022, 36(4):1-7.
    [5] 李素珍, 任家琪, 崔玉玮, 等. 武夷山旅游产业碳足迹核算[J]. 环境工程, 2023, 41(12): 312-318.

    LI S Z, REN J Q, CUI Y W, et al. Accounting of carbon footprint of Wuyishan tourism industry[J]. Environmental Engineering, 2023, 41(12):312-318.
    [6] 孙燕燕. 上海市旅游碳排放估算及其效应分解[J]. 地域研究与开发, 2020, 39(1): 122-126.

    SUN Y Y. Estimation of CO2 emission and its effect decomposition in tourism sector of Shanghai city[J]. Areal Research and Development, 2020, 39(1):122-126.
    [7] YAACOB N F F, YAZID M R M, MAULUD K N A, et al. A review of the measurement method, analysis and implementation policy of carbon dioxide emission from transportation[J]. Sustainability, 2020, 12(14): 22.
    [8] 陈泽生, 黄雅迪, 张洋. 交通碳排放统计和计算方法探讨[J]. 西部交通科技, 2023, 1(7): 204-206.

    CHEN Z S, HUANG Y D, ZHANG Y. Exploration of statistical and computational methods for traffic carbon emissions[J]. Western China Communications Science & Technology, 2023, 1(7):204-206.
    [9] WANG X Y, CAI Y, LIU G, et al. Carbon emission accounting and spatial distribution of industrial entities in Beijing-Combining nighttime light data and urban functional areas[J]. Ecological Informatics, 2022, 70(1): 14.
    [10] 刘杰, 葛潇, 赵振宇. 华北城市群碳排时空演变格局及影响因素研究[J]. 环境工程, 2023, 41(10): 204-212

    ,222. LIU J, GE X, ZHAO Z Y. Research on spatio-temporal evolution of carbon arrangement in north China cities and its influencing factors[J]. Environmental Engineering, 2023, 41(10):204-212,222.
    [11] 于克美, 武剑红, 李红昌. 我国铁路运输业碳排放效率与影响因素分析[J]. 技术经济, 2020, 39(11): 70-76.

    YU K M, WU J H, LI H C. An analysis of carbon emission efficiency and factors of China’s railway transportation industry[J]. Journal of Technology Economics, 2020, 39(11):70-76.
    [12] JIANG J J, YE B, LIU J G. Peak of CO2 emissions in various sectors and provinces of China: recent progress and avenues for further research[J]. Renewable & Sustainable Energy Reviews, 2019, 112(1): 813-833.
    [13] WANG J J, LI Y, ZHANG Y. Research on carbon emissions of road traffic in Chengdu City based on a LEAP model[J]. Sustainability, 2022, 14(9): 15.
    [14] WANG Y Y, HE X B. Spatial economic dependency in the environmental Kuznets curve of carbon dioxide: the case of China[J]. Journal of Cleaner Production, 2019, 218(1): 498-510.
    [15] LIU Y X, YANG S Y, LIU X M, et al. Driving forces of temporal-spatial differences in CO2 emissions at the city level for China’s transport sector[J]. Environmental Science and Pollution Research, 2021, 28(20): 25993-26006.
    [16] OLADUNNI O J, MPOFU K, OLANREWAJU O A. Greenhouse gas emissions and its driving forces in the transport sector of South Africa[J]. Energy Reports, 2022, 8(1): 2052-2061.
    [17] LIAN L, LIN J, YAO R, et al. The CO2 emission changes in China’s transportation sector during 1992—2015: a structural decomposition analysis[J]. Environmental Science and Pollution Research, 2020, 27(9): 9085-9098.
    [18] LU Q Y, CHAI J, WANG S Y, et al. Potential energy conservation and CO2 emissions reduction related to China’s road transportation[J]. Journal of Cleaner Production, 2020, 245(1): 118892.
    [19] MENG M, LI M Y. Decomposition analysis and trend prediction of CO2 emissions in China’s transportation industry[J]. Sustainability, 2020, 12(7): 2596.
    [20] WU Y, ZHOU Y T, LIU Y, et al. A race between economic growth and carbon emissions: how will the CO2 emission reach the peak in transportation industry?[J]. Frontiers in Energy Research, 2022, 9(1): 11.
    [21] WANG L Q, ZHAO Z B, WANG X X, et al. Transportation de-carbonization pathways and effect in China: a systematic analysis using STIRPAT-SD model[J]. Journal of Cleaner Production, 2021, 288(1): 15.
    [22] 王世进, 蒯乐伊. 中国交通运输业碳排放驱动因素与达峰路径[J]. 资源科学, 2022, 44(12): 2415-2427.

    WANG S J, KUAL L Y. Driving factors and peaking path of CO2 emissions for China’s transportation sector[J]. Resources Science, 2022, 44(12):2415-2427.
    [23] BAI C Q, KANG Y, WANG X M. Spatial non-equilibrium and its solidification effect of China’s per capita transportation carbon emissions[J]. Polish Journal of Environmental Studies, 2021, 30(2): 1051-1066.
    [24] SUN Y M, LIU S X, LI L. Grey correlation analysis of transportation carbon emissions under the background of carbon peak and carbon neutrality[J]. Energies, 2022, 15(9): 24.
    [25] YAACOB N F F, YAZID M R M, ABDUL MAULUD K N A, et al. A review of the measurement method, analysis and implementation policy of carbon dioxide emission from transportation[J]. Sustainability, 2020, 12(14): 5873.
    [26] WEN Y F, WU R X, ZHOU Z H, et al. A data-driven method of traffic emissions mapping with land use random forest models[J]. Applied Energy, 2021, 305(1): 11.
    [27] TU D, YUN L, CHEN L, et al. Modeling of mobility as a service (MaaS) collaborative dispatching system of railway passenger transport hub based on neural network algorithm[J]. Wireless Communications & Mobile Computing, 2022, 2022(1): 10.
    [28] 陈文婕, 吴小刚, 肖竹. 中国四大经济区域道路交通碳排放预测与减排潜力评估:基于私家车轨迹数据的情景模拟[J]. 经济地理, 2022, 42(7): 44-52.

    CHEN W J, WU X G, XIAO Z. Carbon emission prediction and emission reduction potential assessment of road traffic in China’s four major economic regions: scenario simulation based on private vehicle trajectory data[J]. Economic Geography, 2022, 42(7):44-52.
    [29] KRISHANKUMAR R, PAMUCAR D, DEVECI M, et al. Prioritization of zero-carbon measures for sustainable urban mobility using integrated double hierarchy decision framework and EDAS approach[J]. Science of the Total Environment, 2021, 797(1): 12.
    [30] 王庆荣, 王俊杰, 朱昌锋, 等. 融合VMD和SSA-LSSVM的交通运输业碳排放预测研究[J]. 环境工程, 2023, 41(10): 124-132.

    WANG Q R, WANG J J, ZHU C F, et al. Carbon emission prediction of transportation industry based on VMD and SSA-LSSVM[J]. Environmental Engineering, 2023, 41(10):124-132.
    [31] ZHU L P, LI Z Z, YANG X B, et al. Forecast of transportation CO2 emissions in Shanghai under multiple scenarios[J]. Sustainability, 2022, 14(20): 13650.
    [32] ZHAO Y M, DING H, LIN X F, et al. Carbon emissions peak in the road and marine transportation sectors in view of cost-benefit analysis: a case of Guangdong Province in China[J]. Frontiers in Environmental Science, 2021, 9(1): 13.
    [33] IBRAHIM A A, LEITE D, DE BACCO C. Sustainable optimal transport in multilayer networks[J]. Physical Review E, 2022, 105(6): 8.
    [34] GHAFFARPASAND O, BURKE M, OSEI L K, et al. Vehicle telematics for safer, cleaner and more sustainable urban transport: a review[J]. Sustainability, 2022, 14(24): 20.
    [35] RUGGIERI R, RUGGERI M, VINCI G, et al. Electric mobility in a smart city: european overview[J]. Energies, 2021, 14(2): 29.
    [36] 邓红梅, 梁巧梅, 刘丽静. 交通领域减污降碳协同控制研究回顾及展望[J]. 中国环境管理, 2023, 15(2): 24-29.

    DENG H M, LIANG Q M, LIU L J. Review and prospect of co-control for reducing pollution and carbon emissions in transportation industry[J]. Chinese Journal of Environmental Management, 2023, 15(2):24-29.
    [37] JI Y L, XUE J. Decoupling effect of county carbon emissions and economic growth in China: empirical evidence from Jiangsu province[J]. International Journal of Environmental Research and Public Health, 2022, 19(6): 22.
    [38] 任宏洋, 杜若岚, 谢贵林, 等. 中国碳排放影响因素及识别方法研究现状[J]. 环境工程, 2023, 41(10): 195-203

    ,244. REN H Y, DU R L, XIE G L, et al. Research status of influencing factors and identification methods of carbon emissions in China[J]. Environmental Engineering, 2023, 41(10):195-203,244.
    [39] LI Y, DONG H, LU S. Research on application of a hybrid heuristic algorithm in transportation carbon emission[J]. Environmental Science and Pollution Research, 2021, 28(35): 48610-48627.
    [40] 张赫, 张建勋, 王睿, 等. 小城市建成环境对居民出行交通碳排放的影响机理[J]. 城市问题, 2020, 1(7): 4-10

    ,20. ZHANG H, ZHANG J X, WANG R, et al. Built environment factors influencing CO2 emissions from residential trips in small Chinese cities[J]. Urban Problems, 2020, 1(7):4-10,20.
    [41] 宋德勇, 宋沁颖, 张麒. 中国交通碳排放驱动因素分析:基于脱钩理论与GFI分解法[J]. 科技管理研究, 2022, 42(11): 216-228.

    SONG D Y, SONG Q Y, ZHANG Q. An analysis of the driving factors of China’s transportation carbon emissions: based on decoupling theory and generalized fisher index decomposition[J]. Science and Technology Management Research, 2022, 42(11):216-228.
    [42] CHEN B C, JI X F, JI X Y. Dynamic and static analysis of carbon emission efficiency in China’s transportation sector[J]. Sustainability, 2023, 15(2): 18.
    [43] 赵小曼, 张帅, 袁长伟. 中国交通运输碳排放环境库兹涅茨曲线的空间计量检验[J]. 统计与决策, 2021, 37(4): 23-26.

    ZHAO X M, ZHANG S, YUAN C W. Spatial measurement test of Kuznets curve for carbon emission environment of China’s transportation[J]. Statistics & Decision, 2021, 37(4):23-26.
    [44] 陈晨, 李薇, 翟梦瑜, 等. 区域间贸易对上海市能源碳排放影响[J]. 环境工程, 2023, 41(10): 245-252

    ,259. CHEN C, LI W, ZHAI M Y, et al. Impact of inter-regional trade on Shanghai’s energy-related carbon emissions[J]. Environmental Engineering, 2023, 41(10):245-252,259.
    [45] KHAN S A R, QUDDOOS M U, AKHTAR M H, et al. Re-investigating the nexuses of renewable energy, natural resources and transport services: a roadmap towards sustainable development[J]. Environmental Science and Pollution Research, 2021, 29(9): 13564-13579.
    [46] OLADUNNI O J, OLANREWAJU O A. Effects of the impact factors on transportation sector’s CO2-eq emissions: panel evaluation on south Africa’s major economies[J]. Atmosphere, 2022, 13(10): 23.
    [47] NNADIRI G U, CHIU A S F, BIONA J M, et al. Comparison of driving forces to increasing traffic flow and transport emissions in philippine regions: a spatial decomposition study[J]. Sustainability, 2021, 13(11): 6500.
    [48] 张国兴, 苏钊贤. 黄河流域交通运输碳排放的影响因素分解与情景预测[J]. 管理评论, 2020, 32(12): 283-294.

    ZHANG G X, SU Z X. Analysis of influencing factors and scenario prediction of transportation carbon emissions in the Yellow River basin[J]. Management Review, 2020, 32(12):283-294.
    [49] XIA S Y, SHAO H Y, WANG H, et al. Spatio-temporal dynamics and driving forces of multi-scale CO2 emissions by integrating DMSP-OLS and NPP-VIIRS data: a case study in Beijing-Tianjin-Hebei, China[J]. Remote Sensing, 2022, 14(19): 20.
    [50] LONG Z, KITT S, AXSEN J. Who supports which low-carbon transport policies? Characterizing heterogeneity among Canadian citizens[J]. Energy Policy, 2021, 155(1): 112302.
    [51] TIKOUDIS I, MARTINEZ L, FARROW K, et al. Ridesharing services and urban transport CO2 emissions: simulation-based evidence from 247 cities[J]. Transportation Research Part D: Transport and Environment, 2021, 97(1): 102923.
    [52] CHEN X, ZHANG S, RUAN S M. Polycentric structure and carbon dioxide emissions: empirical analysis from provincial data in China[J]. Journal of Cleaner Production, 2021, 278(1): 12.
    [53] CHEN X, QIU B, SUN S Q. Polycentric spatial structure and energy efficiency: evidence from China’s provincial panel data[J]. Energy Policy, 2021, 149(1): 13.
    [54] YANG L, WANG Y Q, LIAN Y J, et al. Rational planning strategies of urban structure, metro, and car use for reducing transport carbon dioxide emissions in developing cities[J]. Environment Development and Sustainability, 2022, 25(7): 6987-7010.
    [55] KOPELIAS P, DEMIRIDI E, VOGIATZIS K, et al. Connected & autonomous vehicles-environmental impacts: a review[J]. Science of the Total Environment, 2020, 712(1): 7.
    [56] 黄俊生, 毛保华, 吴雪妍. 碳中和战略下我国交通运输行业碳减排策略研究[J]. 北京交通大学学报(社会科学版), 2023, 22(2): 107-116. HUANG J S, MAO B H, WU X Y. Research on carbon emission reduction strategy of China’s transportation industry under carbon neutrality strategy[J]. Journal of Beijing Jiaotong University(Social Sciences Edition), 2023, 22(2):107-116.
    [57] JING Q L, LIU H Z, YU W Q, et al. The impact of public transportation on carbon emissions-from the perspective of energy consumption[J]. Sustainability, 2022, 14(10): 18.
    [58] SARDAR M S, ASGHAR N, REHMAN H. Moderation of competitiveness in determining environmental sustainability: economic growth and transport sector carbon emissions in global perspective[J]. Environment, Development and Sustainability, 2022, 26(1): 1481-1503.
    [59] LI X G, ZHAN J, LV T, et al. Comprehensive evaluation model of the urban low-carbon passenger transportation structure based on DPSIR[J]. Ecological Indicators, 2023, 146(1): 14.
    [60] 焦萍, 张帅. 数字化对交通运输碳排放强度的影响:基于省际面板数据的实证考察[J]. 华东经济管理, 2023, 37(1): 15-23.

    JIAO P, ZHANG S. The impact of digitalization on transportation carbon emission intensity: empirical investigation based on inter-provincial panel data[J]. East China Economic Management, 2023, 37(1):15-23.
    [61] WIMBADI R W, DJALANTE R, MORI A. Urban experiments with public transport for low carbon mobility transitions in cities: a systematic literature review (1990—2020)[J]. Sustainable Cities and Society, 2021, 72(1): 103023.
    [62] CHEN X Q, MAO S Y, LV S Q, et al. A study on the non-linear impact of digital technology innovation on carbon emissions in the transportation industry[j]. international journal of environmental research and public health, 2022, 19(19): 18.
    [63] SHI T, SI S C, CHAN J, et al. The carbon emission reduction effect of technological innovation on the transportation industry and its spatial heterogeneity: evidence from China[J]. Atmosphere, 2021, 12(9): 20.
    [64] BHAT A, J ORDÓÑEZ G. Sustainability and EU road transport carbon emissions from consumption of diesel and gasoline in 2000 and 2018[J]. Applied Sciences, 2021, 11(16): 7601.
    [65] HEZAM I M, MISHRA A R, RANI P, et al. A hybrid intuitionistic fuzzy-MEREC-RS-DNMA method for assessing the alternative fuel vehicles with sustainability perspectives[J]. Sustainability, 2022, 14(9): 32.
    [66] 何继江, 侯宇, 缪雨含. 欧洲电气化公路建设对中国交通碳中和的启示[J]. 经济与管理, 2022, 36(3): 67-73.

    HE J J, HOU Y, MIAO Y H. Implications of European electric highway policies for carbon-neutral in China’s transportation[J]. Economy and Management, 2022, 36(3):67-73.
    [67] 金昱. 国际大城市交通碳排放特征及减碳策略比较研究[J]. 国际城市规划, 2022, 37(2): 25-33.

    JIN Y. Comparative study on characteristic and planning strategies of transportation carbon emissions in global megacities[J]. Urban Planning International, 2022, 37(2):25-33.
    [68] PAMUCAR D, DEVECI M, CANITEZ F, et al. A novel methodology for prioritizing zero-carbon measures for sustainable transport[J]. Sustainable Production and Consumption, 2021, 27(1): 1093-1112.
    [69] SCHULTHOFF M, KALTSCHMITT M, BALZER C, et al. European road transport policy assessment: a case study for Germany[J]. Environmental Sciences Europe, 2022, 34(1): 21.
    [70] STREIMIKIENE D, KYRIAKOPOULOS G L, STANKUNIENE G. Review of energy and climate plans of baltic states: the contribution of renewables for energy production in households[J]. Energies, 2022, 15(20): 16.
    [71] ZHANG X M, HE P, LIU X Q, et al. The effect of low-carbon transportation pilot policy on carbon performance: evidence from China[J]. Environmental Science and Pollution Research, 2023, 30(19): 54694-54722.
    [72] 顾天奇, 包渊秋, 庄楚天, 等. 双碳场景下机动车管控单元识别及碳减排模型:以苏州古城为例[J]. 城市规划, 2022, 46(增刊1): 104-112. GU T Q, BAO Y Q, ZHUANG C T, et al. Vehicle control unit identification and de-carbonization model under carbon peak and carbon neutrality scenario: taking vehicle control unit identification and de-carbonization model under carbon peak and carbon neutrality scenario: taking Suzhou old town as an example[J]. City Planning Review, 2022

    , 46(S1):104-112.
    [73] WANG H H, SHI W Y, HE W L, et al. Simulation of urban transport carbon dioxide emission reduction environment economic policy in China: an integrated approach using agent-based modelling and system dynamics[J]. Journal of Cleaner Production, 2023, 392(1): 18.
    [74] AL-YAFEI H, ASEEL S, KUCUKVAR M, et al. A systematic review for sustainability of global liquified natural gas industry: a 10-year update[J]. Energy Strategy Reviews, 2021, 38(1): 17.
    [75] 刘薇. 世界主要国家碳税制度及其对我国的启示[J]. 价格理论与实践, 2024, 1(1): 1-5.

    LIU W. Carbon tax systems in major countries of the world and their implications for China[J]. Price: Theory & Practice, 2024, 1(1):1-5.
    [76] 卢茗轩, 谢如鹤, 陈培荣. 碳交易试点政策对交通运输碳排放强度的影响[J]. 干旱区资源与环境, 2020, 34(9): 25-30.

    LU M X, XIE R H, CNEN P R. Impact of ETS pilot policy on transport carbon emission intensity[J]. Journal of Arid Land Resources and Environment, 2020, 34(9):25-30.
    [77] ZENG Q H, HE L Y. Study on the synergistic effect of air pollution prevention and carbon emission reduction in the context of "dual carbon": evidence from China’s transport sector[J]. Energy Policy, 2023, 173(1): 12.
  • 加载中
计量
  • 文章访问数:  22
  • HTML全文浏览量:  2
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-14
  • 录用日期:  2024-08-08
  • 修回日期:  2024-07-17
  • 网络出版日期:  2025-03-21
  • 刊出日期:  2025-03-21

目录

    /

    返回文章
    返回