中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高生物亲和性粉末载体的制备及其在HPB技术中的应用研究

陈锦 王成显 牟悦 柴晓利

陈锦, 王成显, 牟悦, 柴晓利. 高生物亲和性粉末载体的制备及其在HPB技术中的应用研究[J]. 环境工程, 2025, 43(1): 97-106. doi: 10.13205/j.hjgc.202501011
引用本文: 陈锦, 王成显, 牟悦, 柴晓利. 高生物亲和性粉末载体的制备及其在HPB技术中的应用研究[J]. 环境工程, 2025, 43(1): 97-106. doi: 10.13205/j.hjgc.202501011
CHEN Jin, WANG Chengxian, MU Yue, CHAI Xiaoli. Preparation of a highly biocompatible powder carrier and its application in high concentration composite powder carrier bio-fluidized bed (HPB)[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 97-106. doi: 10.13205/j.hjgc.202501011
Citation: CHEN Jin, WANG Chengxian, MU Yue, CHAI Xiaoli. Preparation of a highly biocompatible powder carrier and its application in high concentration composite powder carrier bio-fluidized bed (HPB)[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 97-106. doi: 10.13205/j.hjgc.202501011

高生物亲和性粉末载体的制备及其在HPB技术中的应用研究

doi: 10.13205/j.hjgc.202501011
基金项目: 

国家重点研发计划项目课题(2020YFC1908603)

详细信息
    作者简介:

    陈锦(2001-),男,硕士研究生,主要研究方向为污水生物处理技术。cj1069474309@163.com

    通讯作者:

    柴晓利(1968-),男,教授,主要研究方向为水体污染控制与生态修复技术。xlchai@tongji.edu.cn

Preparation of a highly biocompatible powder carrier and its application in high concentration composite powder carrier bio-fluidized bed (HPB)

  • 摘要: 针对污水处理厂在低温环境下脱氮效率较低的问题,在PY@DE复合粉末载体材料物化表征的基础上,对比分析了高浓度复合粉末载体生物流化床(HPB)技术与传统AAO工艺在污染物去除效能、污泥胞外聚合物(EPS)及微生物群落结构方面的差异。结果表明:添加PY@DE复合粉末载体后,HPB系统出水TN平均浓度为6.85 mg/L,远低于GB 18918—2002《城镇污水处理厂污染物排放标准》中一级A标准,TN平均去除率高达89%,相较于AAO工艺提高了14%。其中,PY@DE复合粉末载体的接触角为14.6°,界面吸附自由能达到46.28 mJ/m2,具有较高的吸附性能。同时,复合粉末载体改善了系统的微生物群落结构,并对Dokdonella、RhodobacterHydrogenophaga等脱氮功能菌属实现了选择性富集。PY@DE复合粉末载体具有较好的生物亲和性,可以促进脱氮功能微生物在HPB系统中的富集,提高生物膜-载体的稳定性,从而维持其在低温下的高效脱氮性能。
  • [1] MORGAN S F. Biofilm development, activity and the modification of carrier material surface properties in moving-bed biofilm reactors (MBBRs) for wastewater treatment[J]. Critical Reviews in Environmental Science and Technology, 2018,48(5):439-470.
    [2] 黄青,杨平,杨忠启,等.MBBR和MBR工艺的污水处理效果与碳排放分析[J].中国给水排水, 2023,39(16):99-104.

    HUANG Q, YANG P, YANG Z Q, et al. Analysis on the engineering effect and carbon emission of MBBR and MBR processes for treating sewage[J]. China Water & Wastewater, 2023, 39(16):99-104.
    [3] TAO C, PENG T, FENG C P, et al. The feasibility of an up-flow partially aerated biological filter (U-PABF) for nitrogen and COD removal from domestic wastewater[J]. Bioresource Technology, 2016,218:307-317.
    [4] BAI Y, ZHANG Y, QUAN X, et al. Enhancing nitrogen removal efficiency and reducing nitrate liquor recirculation ratio by improving simultaneous nitrification and denitrification in integrated fixed-film activated sludge (IFAS) process[J]. Water Science & Technology, 2016,73(4):827-834.
    [5] LIU S, LI Y, WANG J, et al. Enhancing biofilm growth in an integrated fixed-film activated sludge process through modification of polypropylene carriers[J]. Environmental Technology & Innovation, 2023,32:103353.
    [6] LI L, ZHANG J, TIAN Y, et al. Optimization of nutrient removal of novel electrochemically active carriers by response surface methodology[J]. Bioresource Technology, 2019,292:122000.
    [7] PHANWILAI S, KANGWANNARAKUL N, NOOPHAN P, et al. Nitrogen removal efficiencies and microbial communities in full-scale IFAS and MBBR municipal wastewater treatment plants at high COD∶N ratio[J]. Frontiers of Environmental Science & Engineering, 2020,14(6):1-13.
    [8] KRZYWICKA M, SZYMANSKA J, TOFIL S, et al. Surface properties of Ti6Al7Nb alloy: surface free energy and bacteria adhesion[J]. J Functional Biomaterials, 2022,13(1): 1-11.
    [9] JIA F, YANG Q, LIU X, et al. Stratification of extracellular polymeric substances (EPS) for aggregated anammox microorganisms[J]. Environmental Science & Technology, 2017,51(6):3260-3268.
    [10] HERMANSSON M. The DLVO theory in microbial adhesion[J]. Colloids and Surfaces B: Biointerfaces,1999,14(1/4):105-119.
    [11] 苑泉,王海燕,刘凯,等.污水厂尾水MBBR反硝化深度脱氮填料比较[J].环境科学学报, 2015,35(3):713-721.

    YUAN Q, WANG H Y, LIU K, et al. Comparison of the MBBR denitrification carriers for advanced nitrogen removal of wastewater treatment plant effluent[J]. Acta Scientiae Circumstantiae, 2015, 35(3):713-721.
    [12] ZHANG P, CHEN Y P, GUO J S, et al. Adsorption behavior of tightly bound extracellular polymeric substances on model organic surfaces under different pH and cations with surface plasmon resonance[J]. Water Research, 2014,57:31-39.
    [13] 韩红波,王成显,牟悦,等.北方城镇污水处理厂提标扩容 HPB 技术中试研究[J].中国给水排水, 2023,39(13):81-87.

    HAN H B, WANG C X, MU Y, et al. Pilot test of HPB technology applied upgrading and expansion of a municipal wastewater treatment plant in North China[J]. China Water & Wastewater, 2023, 39(13):81-87.
    [14] SINGH N K, PANDEY S, SINGH R P, et al. Effect of intermittent aeration cycles on EPS production and sludge characteristics in a field scale IFAS reactor[J]. Journal of Water Process Engineering, 2018,23:230-238.
    [15] YIN C, MENG F, CHEN G H. Spectroscopic characterization of extracellular polymeric substances from a mixed culture dominated by ammonia-oxidizing bacteria[J]. Water Research, 2015,68:740-749.
    [16] YUAN S J, SUN M, SHENG G P, et al. Identification of key constituents and structure of the extracellular polymeric substances excreted by Bacillus megaterium TF10 for their flocculation capacity[J]. Environmental Science & Technology, 2011,45(3):1152-1157.
    [17] WANG B B, LIU X T, CHEN J M, et al. Composition and functional group characterization of extracellular polymeric substances (EPS) in activated sludge: the impacts of polymerization degree of proteinaceous substrates[J]. Water Research, 2018,129:133-142.
    [18] LIAO B Q, ALLEN D G, DROPPO I G, et al. Surface properties of sludge and their role in bioflocculation and settleability[J]. Water Research, 2001,35(2):339-350.
    [19] BADIREDDY A R, KORPOL B R, CHELLAM S, et al. Spectroscopic characterization of extracellular polymeric substances from Escherichia coli and Serratia marcescens: suppression using sub-inhibitory concentrations of Bismuth Thiols[J]. Biomacromolecules, 2008,9(11):3079-3089.
    [20] BADIREDDY A R, CHELLAM S, GASSMAN P L, et al. Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions[J]. Water Research, 2010,44(15):4505-4516.
    [21] TSUNEDA S, AIKAWA H, HAYASHI H, et al. Extracellular polymeric substances responsible for bacterial adhesion onto solid surface[J]. FEMS Microbiology Letters, 2003,223(2):287-292.
    [22] RITTMANN B E. Biofilms, active substrata, and me[J]. Water Research, 2018,132:135-145.
    [23] WANG J F, DING L L, LI K, et al. Estimation of spatial distribution of quorum sensing signaling in sequencing batch biofilm reactor (SBBR) biofilms[J]. Science of the Total Environment, 2018,612:405-414.
    [24] SEKINE M, AKIZUKI S, KISHI M, et al. Simultaneous biological nitrification and desulfurization treatment of ammonium and sulfide-rich wastewater: effectiveness of a sequential batch operation[J]. Chemosphere, 2020, 244:125381.
    [25] LIANG Z S, SUN J L, ZHAN C G, et al. Effects of sulfide on mixotrophic denitrification by Thauera-dominated denitrifying sludge[J]. Environmental Science: Water Research & Technology, 2020,6(4):1186-1195.
    [26] DERWIS D, MAJTACZ J, KOWAL P, et al. Integration of the sulfate reduction and anammox processes for enhancing sustainable nitrogen removal in granular sludge reactors[J]. Bioresource Technology, 2023,383:129264.
    [27] ZHANG L, QIU Y Y, ZHOU Y, et al. Elemental sulfur as electron donor and/or acceptor: mechanisms, applications and perspectives for biological water and wastewater treatment[J]. Water Research, 2021,202:117373.
  • 加载中
计量
  • 文章访问数:  25
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-14
  • 录用日期:  2024-06-25
  • 修回日期:  2024-05-29
  • 网络出版日期:  2025-03-21
  • 刊出日期:  2025-03-21

目录

    /

    返回文章
    返回