中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种兼顾吸附性和回收性的纤维状除P吸附剂

刘睿谦 赵英杰 薛利红 杨林章

刘睿谦, 赵英杰, 薛利红, 杨林章. 一种兼顾吸附性和回收性的纤维状除P吸附剂[J]. 环境工程, 2025, 43(1): 107-117. doi: 10.13205/j.hjgc.202501012
引用本文: 刘睿谦, 赵英杰, 薛利红, 杨林章. 一种兼顾吸附性和回收性的纤维状除P吸附剂[J]. 环境工程, 2025, 43(1): 107-117. doi: 10.13205/j.hjgc.202501012
LIU Ruiqian, ZHAO Yingjie, XUE Lihong, YANG Linzhang. Preparation of a fibrous phosphorus adsorbent that balances adsorption performance and recovery properties[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 107-117. doi: 10.13205/j.hjgc.202501012
Citation: LIU Ruiqian, ZHAO Yingjie, XUE Lihong, YANG Linzhang. Preparation of a fibrous phosphorus adsorbent that balances adsorption performance and recovery properties[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 107-117. doi: 10.13205/j.hjgc.202501012

一种兼顾吸附性和回收性的纤维状除P吸附剂

doi: 10.13205/j.hjgc.202501012
基金项目: 

国家重点研发计划项目“南方典型农区氮磷迁移转化过程与面源污染发生及调控机制”(2021YFD1700805)

详细信息
    作者简介:

    刘睿谦(1995-),男,助理研究员,主要研究方向为纳米材料研发与农业应用。ruiqianliu@outlook.com

    通讯作者:

    薛利红(1975-),研究员,主要研究方向为农业面源污染治理。njxuelihong@gmail.com

Preparation of a fibrous phosphorus adsorbent that balances adsorption performance and recovery properties

  • 摘要: 运用吸附法处理水体磷(P)污染时,吸附剂的吸附性能与回收性影响其实际应用的可行性。通过简易的浸渍焙烧法,成功研制出一种兼具优良吸附性能和良好回收性的镁改性纤维状磷酸盐吸附剂(MgO@CFF)。以该吸附剂为对象,在不同初始P浓度、共存离子及pH值的条件下,对所制备的MgO@CFF性能进行评估。实验结果表明:在3~7的宽泛pH值区间内,MgO@CFF对P的最大吸附量可达到11.23 mg/g;在各类外来阴离子存在时,其对磷酸盐仍具备超过50%的优先选择性;并且,MgO@CFF展现出快速吸附的特性,60 min时吸附量约达吸附平衡量的75%,约120 min达到吸附平衡;进行10次循环吸附/解吸实验,在后9次循环中MgO@CFF的吸附平衡量衰减仅为8%~10%,再生能力出色。经表征手段证实,MgO@CFF对磷酸盐主要通过放射性线状化学沉淀吸附。纤维状P吸附剂具备吸附效率高、速度快、选择性强以及易于与水分离等优势,在水体除磷领域或许具有广阔的应用前景。
  • [1] 中华人民共和国生态环境部. 2022 年中国生态环境状况公报[J]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202305/P020230529570623593284.pdf. Ministry of Ecology and Environment of the People’s Republic of China. Bulletin of China’s Ecological Environment in 2022

    [J]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202305/P020230529570623593284.pdf.
    [2] ELSER J, BENNETT E. A broken biogeochemical cycle[J]. Nature, 2011, 478(7367): 29-31.
    [3] CORDELL D, DRANGERT J O, WHITE S. The story of phosphorus: Global food security and food for thought[J]. Global Environmental Change, 2009, 19(2): 292-305.
    [4] WU B L, WAN J, ZHANG Y Y, et al. Selective phosphate removal from water and wastewater using sorption: process fundamentals and removal mechanisms[J]. Environmental Science & Technology, 2020, 54(1): 50-66.
    [5] ZHAN Z S, WANG R H, SAAKES M, et al. Basket anode filled with CaCO3 particles: a membrane-free electrochemical system for boosting phosphate recovery and product purity[J]. Water Research, 2023, 231: 119604.
    [6] 冯海霞,张小磊,张桐,等.金属改性生物炭的制备及其吸附除磷性能与机理研究[J].环境工程,2023,41(12):131-141.

    FENG H X, ZHANG X L, ZHANG T, et al. Preparation of metal-modified biochar and its adsorption phosphorus removal performance and mechanism[J]. Environmental Engineering, 2023, 41(12): 131-141.
    [7] SUN T Y, PENG H H, TONG J, et al. Co-doped zeolitic imidazolate framework-L for more rapid phosphate removal[J]. China Environmental Science, 2024: 1-12.
    [8] SUN C Y, HUANG C, WANG P, et al. Low-cost eggshell-fly ash adsorbent for phosphate recovery: a potential slow-release phosphate fertilizer[J]. Water Research, 2024, 255: 121483.
    [9] 张恒,李瑶,赵聪,等.锌铁水滑石改性赤泥对水体磷去除性能及机理[J].环境工程,2024,42(2):57-65.

    ZHANG H, LI Y, ZHAO C, et al. Phosphorus removal performance and mechanism of zinc-iron hydrotalcite modified red mud for water[J]. Environmental Engineering, 2024, 42(2): 57-65.
    [10] QU S T, SHAN S J, WANG C M, et al. Preparation of lanthanum crosslinked calcium peroxide/sepiolite/sodium alginate composite hydrogels and their elimination performance for endogenous phosphorus[J]. Environmental Science, 2024, 45: 2160-2170.
    [11] 宋小宝,何世颖,冯彦房, 等. 载镧磁性水热生物炭的制备及其除磷性能[J]. 环境科学, 2020, 41(3): 773-783.

    SONG X B, HE S Y, FENG Y F, et al. Preparation of lanthanum-loaded magnetic hydrothermal biochar and its phosphorus removal performance[J]. Environmental Science, 2020, 41(3): 773-783.
    [12] LI X D, CHEN J B, ZHANG Z Y, et al. Interactions of phosphate and dissolved organic carbon with lanthanum modified bentonite: implications for the inactivation of phosphorus in lakes[J]. Water Research, 2020, 181: 115941.
    [13] ZHI Y, CALL D F, GRIEGER K D, et al. Influence of natural organic matter and pH on phosphate removal by and filterable lanthanum release from lanthanum-modified bentonite[J]. Water Research, 2021, 202: 117399.
    [14] RASHID M, PRICE N T, GRACIA PINILLA M Á, et al. Effective removal of phosphate from aqueous solution using humic acid-coated magnetite nanoparticles[J]. Water Research, 2017, 123: 353-360.
    [15] HAO H T, WANG Y L, SHI B Y. NaLa(CO3)2 hybridized with Fe3O4 for efficient phosphate removal: synthesis and adsorption mechanistic study[J]. Water Research, 2019, 155: 1-11.
    [16] 金弘毅,唐雪平,庄马展,等.净水厂污泥/河道淤泥混合煅烧制备除磷材料及其除磷性能研究[J].环境工程,2023,41(8):209-217.

    JIN H Y, TANG X P, ZHUANG M Z, et al. Preparation of phosphorus removal materials by mixed calcination of water purification plant sludge and river silt and their phosphorus removal performance[J]. Environmental Engineering, 2023, 41(8): 209-217.
    [17] SURESH KUMAR P, PROT T, KORVING L, et al. Effect of pore size distribution on iron oxide coated granular activated carbons for phosphate adsorption-Importance of mesopores[J]. Chemical Engineering Journal, 2017, 326: 231-239.
    [18] LV N, LI X F, QI X G, et al. Calcium-modified granular attapulgite removed phosphorus from synthetic wastewater containing low-strength phosphorus[J]. Chemosphere, 2022, 296: 133898.
    [19] ALTMANN J, REHFELD D, TRÄDER K, et al. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal[J]. Water Research, 2016, 92: 131-139.
    [20] REN J, LI N, LI L, et al. Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water[J]. Bioresource Technology, 2015, 178: 119-125.
    [21] XU W S, ZHENG W J, WANG F J, et al. Using iron ion-loaded aminated polyacrylonitrile fiber to efficiently remove wastewater phosphate[J]. Chemical Engineering Journal, 2021, 403: 126349.
    [22] ZHENG K K, XIANG L, HUANG C, et al. Efficient phosphate removal and recovery from wastewater with Zn(OH)2@DETA-aminated polyacrylonitrile fibre[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652: 129719.
    [23] XU G, XU W S, TIAN S, et al. Enhanced phosphate removal from wastewater by recyclable fiber supported quaternary ammonium salts: highlighting the role of surface polarity[J]. Chemical Engineering Journal, 2021, 416: 127889.
    [24] YAN Z Y, CHEN D H, QIU Y, et al. Performance and mechanism of pilot-scale carbon fibers enhanced ecological floating beds for urban tail water treatment in optimized ecological floating beds water surface coverage[J]. Bioresource Technology, 2024, 393: 130095.
    [25] LEE Y, ZIMMERMANN S G, KIEU A T, et al. Ferrate (Fe(Ⅵ)) application for municipal wastewater treatment: a novel process for simultaneous micropollutant oxidation and phosphate removal[J]. Environmental Science & Technology, 2009, 43(11): 3831-3838.
    [26] LI M H, LIU Y B, LI F, et al. Defect-rich hierarchical porous UiO-66(Zr) for tunable phosphate removal[J]. Environmental Science & Technology, 2021, 55(22): 13209-13218.
    [27] DAI S W, WEN Q, HUANG F, et al. Preparation and application of MgO-loaded tobermorite to simultaneously remove nitrogen and phosphorus from wastewater[J]. Chemical Engineering Journal, 2022, 446: 136809.
    [28] LIU X, FU J, TANG Y, et al. Mg-coordinated self-assembly of MgO-doped ordered mesoporous carbons for selective recovery of phosphorus from aqueous solutions[J]. Chemical Engineering Journal, 2021, 406: 126748.
    [29] LAPHAM D P, LAPHAM J L. Gas adsorption on commercial magnesium stearate: effects of degassing conditions on nitrogen BET surface area and isotherm characteristics[J]. International Journal of Pharmaceutics, 2017, 530(1/2): 364-376.
    [30] LIU S Q, LIU R Q, ZHANG Y H, et al. Development of a 3D ordered macroporous RuO2 electrode for efficient pyrazole removal from water[J]. Chemosphere, 2019, (): 0-0.
    [31] GONG W L, ZHANG X Z, WU M B, et al. Hydrothermal synthesis of LDO/vinasse biochar composites with ultra-high specific surface areas for phosphate remediation and fertilizer utilization[J]. Separation and Purification Technology, 2024, 337: 126390.
    [32] ZHANG L S, FENG M H, ZHAO D, et al. La-Ca-quaternary amine-modified straw adsorbent for simultaneous removal of nitrate and phosphate from nutrient-polluted water[J]. Separation and Purification Technology, 2023, 304: 122248.
    [33] WONGTHONG U, KHEMTHONG P, YOUNGJAN S, et al. Rational design for MgO-modified porous carbon towards enhancing zoledronic acid adsorption[J]. Applied Surface Science, 2023, 615: 156359.
    [34] YANG S H, WANG C, LI B Q, et al. Removal of Pb2+ from aqueous solution using an MgO nano-hybridized magnetic biochar from spent coffee grounds[J]. Chemical Physics Letters, 2023, 833: 140894.
    [35] DE CARVALHO Eufrásio Pinto M, DAVID Da Silva D, AMORIM Gomes A L, et al. Biochar from carrot residues chemically modified with magnesium for removing phosphorus from aqueous solution[J]. Journal of Cleaner Production, 2019, 222: 36-46.
    [36] SHIN H, TIWARI D, KIM D J. Phosphate adsorption/desorption kinetics and P bioavailability of Mg-biochar from ground coffee waste[J]. Journal of Water Process Engineering, 2020, 37: 101484.
    [37] NAZARIAN R, DESCH R J, THIEL S W. Kinetics and equilibrium adsorption of phosphate on lanthanum oxide supported on activated carbon[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624: 126813.
    [38] LIU R T, SHEN J, HE X J, et al. Efficient macroporous adsorbent for phosphate removal based on hydrate aluminum-functionalized melamine sponge[J]. Chemical Engineering Journal, 2021, 421: 127848.
    [39] CHEN N, ZHAO T H, LI Z Y, et al. Synthesis of ternary Fe-Ca-La oxide composite as highly effective adsorbents to remove phosphate from aqueous solution[J]. Environmental Technology & Innovation, 2023, 32: 103326.
    [40] LIU T, FENG J K, WAN Y Q, et al. ZrO2 nanoparticles confined in metal organic frameworks for highly effective adsorption of phosphate[J]. Chemosphere, 2018, 210: 907-916.
    [41] JIANG S P, WANG J X, QIAO S, et al. Phosphate recovery from aqueous solution through adsorption by magnesium modified multi-walled carbon nanotubes[J]. Science of the Total Environment, 2021, 796: 148907.
    [42] SARKAR S, CHATTERJEE P K, CUMBAL L H, et al. Hybrid ion exchanger supported nanocomposites: sorption and sensing for environmental applications[J]. Chemical Engineering Journal, 2011, 166(2): 923-931.
    [43] LOGANATHAN P, VIGNESWARAN S, KANDASAMY J, et al. Removal and recovery of phosphate from water using sorption[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(10): 847-907.
    [44] ZHANG M D, CHEN Q P, ZHANG R R, et al. Pyrolysis of Ca/Fe-rich antibiotic fermentation residues into biochars for efficient phosphate removal/recovery from wastewater: turning hazardous waste to phosphorous fertilizer[J]. Science of the Total Environment, 2023, 869: 161732.
    [45] LAN Y B, GAI S, CHENG K, et al. Lanthanum carbonate hydroxide/magnetite nanoparticles functionalized porous biochar for phosphate adsorption and recovery: advanced capacity and mechanisms study[J]. Environmental Research, 2022, 214: 113783.
    [46] LIN Z G, CHEN J. Magnetic Fe3O4@MgAl-LDH@La(OH)3 composites with a hierarchical core-shell structure for phosphate removal from wastewater and inhibition of labile sedimentary phosphorus release[J]. Chemosphere, 2021, 264: 128551.
    [47] LIN X C, XIE Y L, LU H J, et al. Facile preparation of dual La-Zr modified magnetite adsorbents for efficient and selective phosphorus recovery[J]. Chemical Engineering Journal, 2021, 413: 127530.
    [48] DENG L C, ZHANG Z Y, WANG J F, et al. Phosphorus removal by magnesium-based cementitious material: performance and mechanisms[J]. Journal of Environmental Chemical Engineering, 2024, 12: 112172.
    [49] DIAO H L, YANG H, FENG Q, et al. Efficient phosphorus recovery utilizing magnesium-modified oil-based drilling cutting Ash: unraveling the role of ammonia nitrogen independent of struvite formation[J]. Separation and Purification Technology, 2023, 327: 124923.
  • 加载中
计量
  • 文章访问数:  10
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-08
  • 录用日期:  2024-08-09
  • 修回日期:  2024-07-30
  • 网络出版日期:  2025-03-21
  • 刊出日期:  2025-03-21

目录

    /

    返回文章
    返回