[1] |
黄德生, 陈煌, 张莉, 等. 长江大保护环境与经济可持续发展问题及对策研究[J]. 环境科学研究, 2020, 33(5): 1284-1292.HUANG D S, CHEN H, ZHANG L, et al. Problems and countermeasures on the sustainable development of environment and economy for Yangtze River conservation[J]. Research of Environmental Sciences, 2020, 33(5): 1284-1292.
|
[2] |
王明翠, 刘雪芹, 张建辉. 湖泊富营养化评价方法及分级标准[J]. 中国环境监测, 2002, 18(5): 47-49.WANG M C, LIU X Q, ZHANG J H. Evaluate method and classification standard on lake eutrophication[J]. Environmental Monitoring in China, 2002, 18(5): 47-49.
|
[3] |
JIANG X S, QU Y X, ZHONG M M, et al. Seasonal and spatial variations of pharmaceuticals and personal care products occurrence and human health risk in drinking water: a case study of China[J]. Science of the Total Environment, 2019, 694.
|
[4] |
ASSESSMENT E R. Guidelines for ecological risk assessment[J]. Washington, DC, United States: Environmental Protection Agency, 1998.
|
[5] |
YU H J, CAO W P. Assessment of pharmaceutical and personal care products (PPCPs) of Dalong Lake in Xuzhou by concentration monitoring and bio-effects monitoring process[J]. Environmental Toxicology and Pharmacology, 2016, 43: 209-215.
|
[6] |
EPA. Ecological Structure Activity Relationships (ECOSAR) Predictive Model[EB/OL]. https://www.epa.gov/tsca-screening-tools/ecological-structure-activity-relationships-ecosar-predictive-model. 2023-09-06.
|
[7] |
孙迎雪, 吴光学, 胡洪营, 等. 昆明市污水处理厂进水水质特征分析[J]. 环境科学与技术, 2013, 36(7): 147-152.SUN Y X, WU G X, HU H Y, et al. Characteristics of influent quality of municipal wastewater treatment plants in Kunming City[J]. Enuivonmental Science and Technology, 2013, 36(7): 147-152.
|
[8] |
邢丽贞, 寇知辉, 吴毅晖, 等. 对某城市污水处理厂技术性能的综合评价[J]. 中国给水排水, 2017, 33(3): 87-92.XING L Z, KOU Z H, WU Y H, et al. Comprehensive evaluation of technical performance of a wastewater treatment plant[J]. China Water & Wastewater, 2017, 33(3): 87-92.
|
[9] |
王众众, 吴光学, 孙迎雪, 等. 污水深度处理微絮凝-Ⅴ型滤池工艺运行性能分析[J]. 给水排水, 2013, 49(9): 52-56.WANG Z Z, WU G X, SUN Y X, et al. Analysis of performance and cost of a micro-flocculation-Ⅴ type filter process applied in wastewater tertiary treatment process[J].Water & Wastewater Engineering, 2013, 49(9): 52-56.
|
[10] |
王众众, 孙迎雪, 吴光学, 等. 污水深度处理微絮凝-D型滤池工艺运行性能与经济性分析[J]. 环境工程学报, 2014, 8(8): 3132-3136.WANG Z Z, WU G X, SUN Y X, et al. Analysis of performance and cost of a micro-flocculation-D type filter process applied in wastewater tertiary treatment process[J].Chinese Journal of Environmental Engineering, 2014, 8(8): 3132-3136.
|
[11] |
王众众, 孙迎雪, 吴光学, 等. Actiflo-D型滤池工艺污水深度处理运行性能分析[J]. 环境工程, 2014, 32(5): 1-5.WANG Z Z, WU G X, SUN Y X, et al. Analysis on performance and cost of a actiflo-D type filter process applied in wastewater tertiary treatment process[J].Environment Engineering, 2014, 32(5): 1-5.
|
[12] |
李凯. 再生水混凝/微絮凝过滤除磷工艺技术经济评价[D]. 北京: 清华大学, 2015. LI K. Technological and Economic Evaluation of Phosphorus Removal by Coagulation/Microflocculation Filtration Process in Water Reuse[D].Beijing: Tsinghua University, 2015.
|
[13] |
杨龙, 王晓燕, 王子健, 等. 基于磷阈值的富营养化风险评价体系[J]. 中国环境科学, 2010, 30(增刊1): 29-34. YANG L, WANG X Y, WANG Z J, et al. A eutrophication risk assessment system based on phosphorus threshold[J].China Environmental Science, 2010, 30(S1): 29-34.
|
[14] |
马迎群, 曹伟, 赵艳民, 等. 典型平原河网区水体富营养化特征、成因分析及控制对策研究[J]. 环境科学学报, 2022, 42(2): 174-183.MA Y Q, CAO W, ZHAO Y M, et al. Eutrophication characteristics,cause analysis and control strategies in a typical plain river network region[J].Acta Scientiae Circumstantiae, 2022, 42(2): 174-183.
|
[15] |
中华人民共和国生态环境部. 关于印发《深入打好长江保护修复攻坚战行动方案》的通知[EB/OL]. Ministry of Ecology and Environment, PRC. Notice on the Issuance of "the Action Plan for Deepening the Battle for the Protection and Restoration of the Yangtze River"[EB/OL].https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202209/t20220919_994278.html.
|
[16] |
CHAVES M D J S, KULZER J, PUJOL DE LIMA P D R, et al. Updated knowledge, partitioning and ecological risk of pharmaceuticals and personal care products in global aquatic environments[J]. Environmental Science-Processes & Impacts, 2022, 24(11): 1982-2008.
|
[17] |
XIN X, HUANG G, ZHANG B. Review of aquatic toxicity of pharmaceuticals and personal care products to algae[J]. Journal of Hazardous Materials, 2021, 410: 124619.
|
[18] |
MANO H, OKAMOTO S. Preliminary ecological risk assessment of 10 PPCPs and their contributions to the toxicity of concentrated surface water on an algal species in the middle basin of Tama River[J]. Journal of Water and Environment Technology, 2016, 14(6): 423-436.
|
[19] |
JIANG X, QU Y, LIU L, et al. PPCPs in a drinking water treatment plant in the Yangtze River Delta of China: occurrence, removal and risk assessment[J]. Frontiers of Environmental Science & Engineering, 2019, 13: 1-13.
|
[20] |
LI X, SHANG X, LUO T, et al. Screening and health risk of organic micropollutants in rural groundwater of Liaodong Peninsula, China[J]. Environmental Pollution, 2016, 218: 739-748.
|
[21] |
DE JESUS GAFFNEY V, ALMEIDA C M, RODRIGUES A, et al. Occurrence of pharmaceuticals in a water supply system and related human health risk assessment[J]. Water Research, 2015, 72: 199-208.
|
[22] |
KIM J-W, ISHIBASHI H, YAMAUCHI R, et al. Acute toxicity of pharmaceutical and personal care products on freshwater crustacean (Thamnocephalus platyurus) and fish (Oryzias latipes)[J]. The Journal of Toxicological Sciences, 2009, 34(2): 227-232.
|
[23] |
OVERTURF M D, ANDERSON J C, PANDELIDES Z, et al. Pharmaceuticals and personal care products: a critical review of the impacts on fish reproduction[J]. Critical Reviews in Toxicology, 2015, 45(6): 469-491.
|
[24] |
TAMURA I, YASUDA Y, KAGOTA K I, et al. Contribution of pharmaceuticals and personal care products (PPCPs) to whole toxicity of water samples collected in effluent-dominated urban streams[J]. Ecotoxicology and Environmental Safety, 2017, 144: 338-350.
|