[1] |
席劲瑛,武俊良,胡洪营,等. 工业VOCs排放源废气排放特征调查与分析[J]. 中国环境科学, 2010, 30(11): 1558-1562.XI J Y, WU J L, HU H Y, et al. Investigation and analysis of exhaust gas emission characteristics of industrial VOCs emission sources[J]. China Environmental Science, 2010, 30(11): 1558-1562.
|
[2] |
陈立,刘霄龙,施文博,等. 氯代挥发性有机物CVOCs催化氧化的研究进展[J]. 环境工程, 2017, 35(10): 114-119.CHEN L, LIU X L, SHI W B, et al. Research progress in catalytic oxidation of chlorinated volatile organic compounds (CVOCs)[J]. Environmental Engineering, 2017, 35(10): 114-119.
|
[3] |
汤奔,苏惠旋. 化工类废气挥发性有机VOC的危害及催化氧化技术研究进展[J]. 广东化工, 2023, 50(9): 150-153.TANG B, SU H X. Research progress on the hazards of volatile organic VOCs in chemical waste gas and catalytic oxidation technology[J]. Guangdong Chemical Industry, 2023, 50(9): 150-153.
|
[4] |
魏潇,黄胜,吴幼青,等. VOCs末端治理技术的研究现状[J]. 环境工程, 2023, 41(增刊1): 338-344. WEI X, HUANG S, WU Y Q, et al. Research status of VOCs end treatment technology[J]. Environmental Engineering, 2023, 41(S1): 338-344.
|
[5] |
张景才. 耐高温负载型贵金属催化燃烧及甲烷干重整催化剂研究[D]. 济南:山东大学, 2017. ZHANG J C. Research on high temperature supported catalysts for catalytic combustion of precious metals and dry reforming of methane[D]. Jinan: Shandong University, 2017.
|
[6] |
MA M J, ZHANG Y, JI Y J, et al. Diluted silicon promoting Pd/Pt catalysts for oxygen reduction reaction with strong anti-poisoning effect[J]. Applied Catalysis B: Environmental, 2022, 315.
|
[7] |
唐文清,冯泳兰,李小明. 掺硅碳羟基磷灰石的制备及其对Pb2+的吸附性能[J]. 中国环境科学, 2013, 33(6): 1017-1024.TANG W Q, FENG Y L, LI X M. Preparation of silica-doped hydroxyapatite and its adsorption properties for Pb2+[J]. China Environmental Science, 2013, 33(6): 1017-1024.
|
[8] |
马利国,孙艳荣,李东来,等. 羟基磷灰石载体的结构和作用及在催化剂制备中的应用[J]. 硅酸盐学报, 2019, 47(12): 1808-1817.MA L G, SUN Y R, LI D L, et al. Structure and function of hydroxyapatite support and its application in catalyst preparation[J]. Journal of the Chinese Ceramics, 2019, 47(12): 1808-1817.
|
[9] |
SHUAI C J, YANG W J, FENG P, et al. Accelerated degradation of HAP/PLLA bone scaffold by PGA blending facilitates bioactivity and osteoconductivity[J]. Bioactive Materials, 2021, 6(2): 490-502.
|
[10] |
李梦雨,汤建伟,刘咏,等. 醋酸酸解磷尾矿制备醋酸钙镁融雪剂工艺研究[J]. 无机盐工业, 2024, 56(1): 73-80.LI M Y, TANG J W, LIU Y, et al. Study on preparation of calcium and magnesium acetate snowmelt from tailings of phosphorous solution[J]. Inorganic Chemicals Industry, 2024, 56(1): 73-80.
|
[11] |
刘羽,钟康年,胡文云. 钙磷比对溶—凝法合成羟基磷灰石特征的影响[J]. 化学工业与工程技术, 1997(1): 20-22,56.LIU Y, ZHONG K N, HU W Y. Effect of the ratio of calcium and phosphorus on the characteristics of hydroxyapatite synthesized by solution-coagulation method[J]. Chemical Industry and Engineering Technology, 1997(1): 20-22,56.
|
[12] |
WANG J D,LIU J K, LU Y, et al. Catalytic performance of gold nanoparticles using different crystallinity HAP as carrier materials[J]. Materials Research Bulletin, 2014, 55.
|
[13] |
TRUNG B C, TU L N Q, THANH L D, et al. Combined adsorption and catalytic oxidation for low-temperature toluene removal using nano-sized noble metal supported on ceria-granular carbon[J]. Journal of Environmental Chemical Engineering, 2020, 8(2).
|
[14] |
YANG P, YANG S S, SHI Z N, et al. Deep oxidation of chlorinated VOCs over CeO2 based transition metal mixed oxide catalysts[J]. Applied Catalysis B: Environmental, 2015, 162.
|
[15] |
戴晓霞. 铈基催化剂催化净化氯苯的反应机制及性能优化研究[D]. 杭州:浙江大学, 2020. DAI X X. Reaction mechanism and optimization of the ceria-based catalysts in the catalytic destruction of chlorobenzene[D]. Hangzhou:Zhejiang University,2020.
|
[16] |
XIAO M L, YANG X Q, PENG Y, et al. Confining shell-sandwiched Ag clusters in MnO2-CeO2 hollow spheres to boost activity and stability of toluene combustion[J]. Nano Research, 2022, 15(8).
|
[17] |
SHEN K, GAO B, XIA H Q, et al. Oxy-anionic doping: a new strategy for improving selectivity of Ru/CeO2 with synergetic versatility and thermal stability for catalytic oxidation of chlorinated volatile organic compounds[J]. Environmental Science & Technology, 2022.
|
[18] |
WANG Y, YANG D, LI S, et al. Ru/hierarchical HZSM-5 zeolite as efficient bi-functional adsorbent/catalyst for bulky aromatic VOCs elimination[J]. Microporous and Mesoporous Materials, 2018, 258.
|
[19] |
施文博. 钌基催化剂催化氧化VOCs的研究进展[J]. 化工技术与开发, 2016, 45(8): 36-38.SHI W B.Research Progress of Catalytic Oxidation of VOCs with Ru-based Catalyst[J]. Technology & Development of Chemical Industry,2016,45(8):36-38.
|
[20] |
孙海杰,刘欣改,陈志浩,等. 羟基磷灰石负载Ru催化氨硼烷产氢性能研究[J]. 江西师范大学学报(自然科学版), 2020, 44(4): 424-428. SUN H J,LIU X G,CHEN Z H,et al. The Performance of Ru/HAP Catalysts for Hydrogen Generation from Catalytic Hydrolysis of Ammonia Borane[J]. Journal of Jiangxi Normal University( Natural Science), 2020, 44(4): 424-428.
|
[21] |
BROWN P W, CONSTANTZ B. Hydroxyapatite and Related Materials[M]. Boca Raton: CRC Press.
|
[22] |
SALMA K, BERZINA-C L, BORODAJENKO N. Calcium phosphate bioceramics prepared from wet chemically precipitated powders[J]. Processing and Application of Ceramics, 2010, 4(1): 45-51.
|
[23] |
MATSUURA Y, ONDA A, YANAGISAWA K. Selective conversion of lactic acid into acrylic acid over hydroxyapatite catalysts[J]. Catalysis Communications, 2014, 48.
|
[24] |
LIN G B, LIN W W, WU J H, et al. Oxidation of 5-methoxymethylfurfural to 2, 5-furandicarboxylic acid over Ru/hydroxyapatite catalyst in water[J]. Chemical Engineering Science, 2022, 249.
|
[25] |
GUO X Y, LIU B, GAO X H, et al. Improved olefin selectivity during CO hydrogenation on hydrophilic Fe/HAP catalysts[J]. Catalysis Today, 2023, 410.
|
[26] |
WANG Y, WANG P, LU X F, et al. Construction of mesoporous Ru@ZSM-5 catalyst for dichloromethane degradation: synergy between acidic sites and redox centres[J]. Fuel, 2023, 346.
|
[27] |
WANG Y, DU C, LIU Z, et al. Highly active and durable chlorobenzene oxidation catalyst via porous atomic layer coating of Ru on Pt/Al2O3[J]. Applied Catalysis B: Environmental, 2023, 330.
|
[28] |
ZHANG Y P, LI G B, WU P, et al. Enhancement of PdV/TiO2 catalyst for low temperature DCM catalytic removal and chlorine poisoning resistance by oxygen vacancy construction[J]. Chemical Engineering Science, 2022, 264: 118126.
|
[29] |
SILVESTER L, LAMONIER J F, VANNIER R N, et al. Structural, textural and acid-base properties of carbonate-containing hydroxyapatites[J]. Journal of Materials Chemistry A, 2014, 2(29).
|
[30] |
DAI Q G, SHEN K, DENG W, et al. HCl-tolerant HxPO4/RuOx-CeO2 catalysts for extremely efficient catalytic elimination of chlorinated VOCs[J]. Environmental Science & Technology, 2021, 55(6).
|
[31] |
WANG Y, CHEN Y, ZHANG L, et al. Total catalytic oxidation of chlorinated aromatics over bimetallic Pt-Ru supported on hierarchical HZSM-5 zeolite[J]. Microporous and Mesoporous Materials, 2020, 308.
|
[32] |
DAI Q G, BAI S, WANG X, et al. Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts: mechanism study[J]. Applied Catalysis B: Environmental, 2013, 129: 580-588.
|
[33] |
TESCHNER D, FARRA R, YAO L, et al. An integrated approach to Deacon chemistry on RuO2-based catalysts[J]. J Catal, 2012, 285(1): 273-284.
|
[34] |
LIN F W, ZHANG Z M, LI N, et al. How to achieve complete elimination of Cl-VOCs: a critical review on byproducts formation and inhibition strategies during catalytic oxidation[J]. Chemical Engineering Journal, 2021, 404: 126534.
|
[35] |
SU J, YAO W Y, LIU Y, et al. The impact of CrOx loading on reaction behaviors of dichloromethane (DCM) catalytic combustion over Cr-O/HZSM-5 catalysts[J]. Applied Surface Science, 2017, 396.
|