中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小微湿地控制城乡水污染:重庆梁平模式

陈国贵 崔保山 蔡燕子 李冬雪 宁中华 余先怀 王荣 谢湉

陈国贵, 崔保山, 蔡燕子, 李冬雪, 宁中华, 余先怀, 王荣, 谢湉. 小微湿地控制城乡水污染:重庆梁平模式[J]. 环境工程, 2025, 43(2): 1-10. doi: 10.13205/j.hjgc.202502001
引用本文: 陈国贵, 崔保山, 蔡燕子, 李冬雪, 宁中华, 余先怀, 王荣, 谢湉. 小微湿地控制城乡水污染:重庆梁平模式[J]. 环境工程, 2025, 43(2): 1-10. doi: 10.13205/j.hjgc.202502001
CHEN Guogui, CUI Baoshan, CAI Yanzi, LI Dongxue, NING Zhonghua, YU Xianhuai, WANG Rong, XIE Tian. Micro-wetlands control urban and rural water pollution: the Chongqing Liangping model[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(2): 1-10. doi: 10.13205/j.hjgc.202502001
Citation: CHEN Guogui, CUI Baoshan, CAI Yanzi, LI Dongxue, NING Zhonghua, YU Xianhuai, WANG Rong, XIE Tian. Micro-wetlands control urban and rural water pollution: the Chongqing Liangping model[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(2): 1-10. doi: 10.13205/j.hjgc.202502001

小微湿地控制城乡水污染:重庆梁平模式

doi: 10.13205/j.hjgc.202502001
基金项目: 

科技基础资源调查专项资助(2022FY100304)

国家林业和草原局应急揭榜挂帅项目(202302)

国家重点研发计划(2022YFF1301001-04)

国家自然科学基金重点项目(42330705、U2243208、U1901212)

重庆梁平区湿地生态系统健康评估与保护修复策略项目

中国博士后科学基金(2022M720480)

详细信息
    作者简介:

    陈国贵,博士,主要从事湿地生态过程、环境响应和湿地修复等研究。1026992680@qq.com

    通讯作者:

    崔保山,博士,教授,长期从事河湖湿地生态过程和环境响应、生态水利和湿地修复等研究。cuibs@bnu.edu.cn
    谢湉,博士,副教授,长期从事湿地生态修复等研究。tianxie@bnu.edu.cn

    崔保山,博士,教授,长期从事河湖湿地生态过程和环境响应、生态水利和湿地修复等研究。cuibs@bnu.edu.cn
    谢湉,博士,副教授,长期从事湿地生态修复等研究。tianxie@bnu.edu.cn

Micro-wetlands control urban and rural water pollution: the Chongqing Liangping model

  • 摘要: 目前,小微湿地对城乡水体污染物的去除效率和影响因素仍不清楚。研究以重庆梁平小微湿地网络为研究对象,探讨小微湿地对城乡水体总氮(TN)和总磷(TP)的去除率,并探究了地形和水文对去除率的影响。结果显示:小微湿地对TN和TP的平均去除率分别为46.86%和85.93%。农村地区小微湿地的TN去除率显著高于城市地区(56.95% vs. 45.19%;P<0.05),而农村地区小微湿地的TP去除率低于城市地区(68.04% vs. 92.94%;P<0.05)。小微湿地的营养物去除率与地表高程之间存在明显的驼峰关系。并且,水流速率和地形高程的交互作用对小微湿地的营养物去除存在显著正效应,比单一因素效应更为显著。小型湿地能应对营养径流,提供生态利益,增强生态弹性,并为资源有限区域提供可扩展经济方案,尤其在人口或农业密集区更显重要,因此对小型湿地的研究具有关键意义。该研究强调了在城乡地区管理非点源污染时,保护和恢复小型下水道、小型观赏池塘、小型混合渠道(河流和下水道)、小型农田(水稻和旱地土壤)和小型湖泊等小微湿地的重要性。
  • [1] WOODWARD G, GESSNER M O, GILLER P S, et al. Continental-scale effects of nutrient pollution on stream ecosystem functioning[J]. Science, 2012, 336 (6087): 1438-1440.
    [2] LINTERN A, MCPHILLIPS L, WINFREY B, et al. Best management practices for diffuse nutrient pollution: wicked problems across urban and agricultural watersheds[J]. Environmental Science & Technology, 2020, 54 (15): 9159-9174.
    [3] CHEN X, STROKAL M, VAN VLIET M T H, et al. Multi-scale modeling of nutrient pollution in the rivers of China[J]. Environmental Science & Technology, 2019, 53 (16): 9614-9625.
    [4] BLACKWELL M S A.PILGRIM E S. Ecosystem services delivered by small-scale wetlands[J]. Hydrological Sciences Journal, 2011, 56 (8): 1467-1484.
    [5] DEANE D C, FORDHAM D A, HE F, et al. Future extinction risk of wetland plants is higher from individual patch loss than total area reduction[J]. Biological Conservation, 2017, 209: 27-33.
    [6] SILLS J, CURNICK D J, PETTORELLI N, et al. The value of small mangrove patches[J]. Science, 2019, 363 (6424): 239-239.
    [7] 袁兴中, 李祖慧, 蒋启波, 等. 春沼生态系统概述及其研究进展[J]. 生态学报, 2023, 43 (13): 5235-5250.

    YUAN X Z, LI Z H, JIANG Q B, et al. An overview and research progress of the vernal pool ecosystem[J]. Acta Ecologica Sinica, 2023, 43 (13): 5235-5250.
    [8] VANDERHOOF M K, ALEXANDER L C, TODD M J. Temporal and spatial patterns of wetland extent influence variability of surface water connectivity in the Prairie Pothole Region, United States[J]. Landscape Ecology, 2016, 31 (4): 805-824.
    [9] 阙子亿,王晓锋,袁兴中 等. 梯级筑坝下小型山区河流水体碳氮磷的时空特征及富营养化风险[J]. 湖泊科学, 2022, 34 (6): 1949-1967.

    QUE Z Y, WANG X F, YUAN X Z, et al. Spatial-temporal distribution of carbon,nitrogen and phosphorus concentrations and eutrophication evaluation of mountainous small river in a cascaded damming[J] Journal of Lake Sciences, 2022, 34 (6): 1949-1967.
    [10] CHENG F Y, BASU N B. Biogeochemical hotspots: role of small water bodies in landscape nutrient processing[J]. Water Resources Research, 2017, 53 (6): 5038-5056.
    [11] BRASKERUD B C. Factors affecting phosphorus retention in small constructed wetlands treating agricultural non-point source pollution[J]. Ecological Engineering, 2002, 19 (1): 41-61.
    [12] ZHONG S, CHEN F, XIE D, et al. A three-dimensional and multi-source integrated technology system for controlling rural non-point source pollution in the Three Gorges Reservoir Area, China[J]. Journal of Cleaner Production, 2020, 272: 122579.
    [13] WANG T, ZHU B.ZHOU M. Ecological ditch system for nutrient removal of rural domestic sewage in the hilly area of the central Sichuan Basin, China[J]. Journal of Hydrology, 2019, 570: 839-849.
    [14] ZHANG D, WANG K, ZHANG G, et al. Ecological engineering practice of cascade-pond system: water purification and biodiversity conservation[J]. Ecological Engineering, 2022, 179: 106632.
    [15] XUE J, WANG Q, ZHANG M. A review of non-point source water pollution modeling for the urban-rural transitional areas of China: research status and prospect[J]. Science of the Total Environment, 2022, 826: 154146.
    [16] GARCIA CHANCE L M,VAN BRUNT S C, MAJSZTRIK J C, et al. Short- and long-term dynamics of nutrient removal in floating treatment wetlands[J]. Water Research, 2019, 159: 153-163.
    [17] VERHOEVEN J T A, ARHEIMER B, YIN C, et al. Regional and global concerns over wetlands and water quality[J]. Trends Ecol Evol, 2006, 21 (2): 96-103.
    [18] VYMAZAL J. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment, 2007, 380 (1): 48-65.
    [19] CHEN X, LIAN X Y, WANG Y, et al. Impacts of hydraulic conditions on microplastics biofilm development, shear stresses distribution, and microbial community structures in drinking water distribution pipes[J]. J Environ Manage, 2023, 325 (Pt A): 116510.
    [20] LI D, CHU Z, HUANG M, et al. Multiphasic assessment of effects of design configuration on nutrient removal in storing multiple-pond constructed wetlands[J]. Bioresource Technology, 2019, 290: 121748.
    [21] PAVLINERI N, SKOULIKIDIS N T, TSIHRINTZIS V A. Constructed floating wetlands: a review of research, design, operation and management aspects, and data meta-analysis[J]. Chemical Engineering Journal, 2017, 308: 1120-1132.
    [22] MARTON J M, CREED I F, LEWIS D B, et al. Geographically isolated wetlands are important biogeochemical reactors on the landscape[J]. BioScience, 2015, 65 (4): 408-418.
    [23] MENGISTU S G, CREED I F, WEBSTER K L, et al. Searching for similarity in topographic controls on carbon, nitrogen and phosphorus export from forested headwater catchments[J]. Hydrological Processes, 2014, 28 (8): 3201-3216.
    [24] DOLLINGER J, DAGÈS C, BAILLY J S, et al. Managing ditches for agroecological engineering of landscape: a review[J]. Agronomy for Sustainable Development, 2015, 35 (3): 999-1020.
    [25] XIONG Z, LI S, YAO L, et al. Topography and land use effects on spatial variability of soil denitrification and related soil properties in riparian wetlands[J]. Ecological Engineering, 2015, 83: 437-443.
    [26] GOU X, ZENG B, GONG Y. Application of the novel four-parameter discrete optimized grey model to forecast the wastewater discharged in Chongqing China[J]. Engineering Applications of Artificial Intelligence, 2022, 107: 104522.
    [27] YU Y, ZHOU L, ZHOU W, et al. Decoupling environmental pressure from economic growth on city level: the case study of Chongqing in China[J]. Ecological Indicators, 2017, 75: 27-35.
    [28] LIU Y, YUE W, FAN P, et al. Assessing the urban environmental quality of mountainous cities: a case study in Chongqing, China[J]. Ecological Indicators, 2017, 81: 132-145.
    [29] CHEN M, XU X, WU X, et al. Centennial-scale study on the spatial-temporal evolution of riparian wetlands in the Yangtze River of China[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 113: 102874.
    [30] AL-SHAERY A, ZHANG S.RIZOS C. An enhanced calibration method of GLONASS inter-channel bias for GNSS RTK[J]. GPS Solutions, 2013, 17 (2): 165-173.
    [31] ZAR J H. Significance testing of the Spearman rank correlation coefficient[J]. Journal of the American Statistical Association 1972, 67 (339): 578-580.
    [32] CHEN G, GU X, LIU Y, et al. Extreme cold event reduces the stability of mangrove soil mollusc community biomass in a context of climate impact[J]. Environmental Research Letters, 2021, 16 (9): 094050.
    [33] BATES D, MÄCHLER M, BOLKER B, et al. Fitting linear mixed-effects models using lme4[J]. Journal of Statistical Software, 2015, 67 (1): 1-48.
    [34] ELZHOV T V, MULLEN K M, SPIESS A N, et al. Minpack.lm: R interface to the Levenberg-Marquardt nonlinear least-squares algorithm found in MINPACK, plus support for bounds[EB/OL].2013http://CRAN.R-project.org/package = minpack.lm.
    [35] FAIRCHILD G W.VELINSKY D J. Effects of small ponds on stream water chemistry[J]. Lake and Reservoir Management, 2006, 22 (4): 321-330.
    [36] KATAKI S, CHATTERJEE S, VAIRALE M G, et al. Constructed wetland, an eco-technology for wastewater treatment: a review on types of wastewater treated and components of the technology (macrophyte, biofilm and substrate)[J]. Journal of Environmental Management, 2021, 283: 111986.
    [37] KUGLEROVÁ L, JYVÄSJÄRVI J, RUFFING C, et al. Cutting edge: A comparison of contemporary practices of riparian buffer retention around small streams in Canada, Finland, and Sweden[J]. Water Resources Research, 2020, 56 (9): e2019WR026381.
    [38] MATAMOROS V, RODRÍGUEZ Y, ALBAIGÉS J. A comparative assessment of intensive and extensive wastewater treatment technologies for removing emerging contaminants in small communities[J]. Water Research, 2016, 88: 777-785.
    [39] YIN C, SHAN B. Multipond systems: a sustainable way to control diffuse phosphorus pollution[J]. AMBIO: A Journal of the Human Environment, 2001, 30 (6): 369-375.
    [40] STRAHLER A N. Hypsometric (area-altitude) analysis of erosional topography[J]. Bulletin of the Geological Society of America 1952, 63 (11): 1117-1142.
    [41] LYU C, LI X, YUAN P, et al. Nitrogen retention effect of riparian zones in agricultural areas: a meta-analysis[J]. Journal of Cleaner Production, 2021, 315: 128143.
    [42] ZEDLER J B. Progress in wetland restoration ecology[J]. Trends Ecol Evol, 2000, 15 (10): 402-407.
    [43] HONG H, WU S, WANG Q, et al. Fluorescent dissolved organic matter facilitates the phytoavailability of copper in the coastal wetlands influenced by artificial topography[J]. Science of the Total Environment, 2021, 790 147855.
    [44] LINTERN A, WEBB J A, RYU D, et al. Key factors influencing differences in stream water quality across space[J]. WIREs Water, 2018, 5 (1): e1260.
    [45] HIJOSA-VALSERO M, MATAMOROS V, SIDRACH-CARDONA R, et al. Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters[J]. Water Research, 2010, 44 (12): 3669-3678.
    [46] BOOG J, NIVALA J, AUBRON T, et al. Hydraulic characterization and optimization of total nitrogen removal in an aerated vertical subsurface flow treatment wetland[J]. Bioresource Technology, 2014, 162: 166-174.
    [47] LI D, CHU Z, LI P, et al. Impacts of landscape spatial configuration of integrated multi-pond constructed wetlands in a basin on the treatment of non-point source pollution[J]. Journal of Cleaner Production, 2023, 383: 135389.
  • 加载中
计量
  • 文章访问数:  125
  • HTML全文浏览量:  30
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-12
  • 录用日期:  2024-09-04
  • 修回日期:  2024-08-02

目录

    /

    返回文章
    返回