中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市圈层和水体管理措施对小水体无机氮含量空间分布格局的影响:以湖南省长沙市为例

焦军霞 石锦 周脚根 雷秋良

焦军霞, 石锦, 周脚根, 雷秋良. 城市圈层和水体管理措施对小水体无机氮含量空间分布格局的影响:以湖南省长沙市为例[J]. 环境工程, 2025, 43(2): 11-20. doi: 10.13205/j.hjgc.202502002
引用本文: 焦军霞, 石锦, 周脚根, 雷秋良. 城市圈层和水体管理措施对小水体无机氮含量空间分布格局的影响:以湖南省长沙市为例[J]. 环境工程, 2025, 43(2): 11-20. doi: 10.13205/j.hjgc.202502002
JIAO Junxia, SHI Jin, ZHOU Jiaogen, LEI Qiuliang. Effects of urban circle and water management measures on spatial distribution pattern of inorganic nitrogen content in small water bodies: A case study of Changsha, Hunan Province[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(2): 11-20. doi: 10.13205/j.hjgc.202502002
Citation: JIAO Junxia, SHI Jin, ZHOU Jiaogen, LEI Qiuliang. Effects of urban circle and water management measures on spatial distribution pattern of inorganic nitrogen content in small water bodies: A case study of Changsha, Hunan Province[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(2): 11-20. doi: 10.13205/j.hjgc.202502002

城市圈层和水体管理措施对小水体无机氮含量空间分布格局的影响:以湖南省长沙市为例

doi: 10.13205/j.hjgc.202502002
基金项目: 

国家自然科学基金区域创新发展联合基金项目(U20A20114)

淮安自然科学基金项目(HABL202105)

国家自然科学基金项目(41877009)

详细信息
    作者简介:

    焦军霞(1990-),女,硕士研究生,主要从事区域环境规划与生态治理方面研究。jiaojunxia90@126.com

    通讯作者:

    周脚根(1978-),男,教授,主要从事流域环境健康与大数据管理研究。zhoujg@hytc.edu.cn

Effects of urban circle and water management measures on spatial distribution pattern of inorganic nitrogen content in small water bodies: A case study of Changsha, Hunan Province

  • 摘要: 研究小水体无机氮(DIN)含量的空间变化规律及其驱动因素,有助于科学制定城市小水体污染防控方案。以长沙市为研究区,随机取样监测68个小水体中DIN含量,按其距市中心距离划分为< 5 km、5~10 km、>10 km 3个圈层,探讨小水体中氨氮(NH4+-N)、硝态氮(NO3--N)和DIN含量的空间分异及其影响因素。结果表明:研究区小水体DIN含量总体具有较大的变异性(CV达178.42%),其中,7.35%的小水体处于NH4+-N污染状态。>10 km圈层内小水体NH4+-N、NO3--N和DIN含量均值高于<5 km和5~10 km圈层水体,表明城市小水体NH4+-N、NO3--N和DIN含量随离城市中心距离呈增加趋势。城郊地带的养殖小水体NH4+-N和DIN含量均值高于位于城中心的长期生态受保护、生态恢复和生态退化3种小水体。同时,层次方差分解分析结果表明,城市圈层和水体管理模式对NH4+-N、NO3--N和DIN方差变异的总贡献分别为59.5%、49.2%和68.5%,进一步证实离城市中心距离和水体管理模式是影响小水体DIN组份含量变异的主要因素,且两者发展实施不协调。小水体污染面临着从城区向城郊转移的风险,需要进一步加强全局协调和统筹规划防控治理。
  • [1] DOWNING J A, PRAIRIE Y T, COLE J J, et al. The global abundance and size distribution of lakes, ponds, and impoundments[J]. Limnology and Oceanography, 2006, 51: 2388-2397.
    [2] 吕明权, 吴胜军, 马茂华, 等. 中国小型水体空间分布特征及影响因素[J]. 中国科学: 地球科学, 2022(8): 052. LÜ M Q, WU S J, MA M H, et al. Spatial distribution and influencing factors of small water bodies in China[J]. Science China: Earth Sciences, 2022

    (8):052.
    [3] 崔丽娟, 雷茵茹, 张曼胤, 等. 小微湿地研究综述: 定义、类型及生态系统服务[J]. 生态学报, 2021, 41(5): 2077-2085.

    CUI L J, LEI Y R, ZHANG M Y, et al. Review on small wetlands: definition, typology and ecological services[J]. Acta Ecologica Sinica, 2021, 41(5):2077-2085.
    [4] DOWNING J A. Emerging global role of small lakes and ponds: little things mean a lot[J]. Limnetica, 2010, 29(1): 9-24.
    [5] FAIRCHILD G W, VELINSKY D J. Effects of small ponds on stream water chemistry[J]. Lake and Reservoir Management, 2006, 22(4): 321-330.
    [6] 吴雅丽, 许海, 杨桂军, 等. 太湖水体氮素污染状况研究进展[J]. 湖泊科学, 2014, 26(1): 19-28.

    WU Y L, XU H, YANG G J, et al. Research progress on nitrogen pollution in the water of Taihu Lake[J]. Journal of Lake Sciences, 2014, 26(1):19-28.
    [7] 冼超凡, 潘雪莲, 甄泉, 等. 城市生态系统污染氮足迹与灰水足迹综合评价[J]. 环境科学学报, 2019,39(3): 985-995.

    XIAN C F, PAN X L, ZHEN Q, et al. Integrated assessments of nitrogen pollution footprints and grey water footprints in the urban ecosystem[J]. Acta Scientiae Circumstantiae, 2019, 39(3):985-995.
    [8] 刘洁岭, 何洋. 城市景观水体富营养化现状及成因[J]. 绿色科技, 2017(12): 73-74. LIU J L, HE Y. Discussion on present situation and formation of eutrophication in urban landscape water[J]. Journal of Green Science and Technology, 2017

    (12):73-74.
    [9] YU C, HUANG X, CHEN H, et al. Managing nitrogen to restore water quality in China[J]. Nature, 2019, 567(7749): 516-520.
    [10] FOCHT D D, VERSTRAETE W. Biochemical ecology of nitrification and denitrification[J]. Advances in Microbiological Ecology, 1977, 1: 135-214.
    [11] BAUZA J F, MORELL J M, CORREDOR J E. Biogeochemistry of nitrous oxide production in the red mangrove (Rhizophora mangle) forest sediments[J]. Estuarine, Coastal and Shelf Science, 2002, 55(5): 697-704.
    [12] RAVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide(N2O): the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949): 123-125.
    [13] LAKSHMAN S V J, JAYASANKAR C K. Optical absorption spectra of the tripositive thulium ion in certain nitrate complexes[J]. Journal of Physics C: Solid State Physics, 1984, 17(16).
    [14] 陈瑞明. 铵态氮和亚硝酸盐氮对鳜鱼苗的急性毒性试验[J]. 水利渔业, 1998(1): 17-20. CHEN R M. Acute toxicity of ammonium and nitrite to mandarin fish fry[J]. Reservoir Fisheries, 1998

    (1):17-20.
    [15] 李政, 何欢祺, 张天旭, 等. 典型底栖生物泥鳅的急性毒性物种敏感性评价[J]. 生态与农村环境学报, 2019, 35(3): 392-397.

    LI Z, HE H Q, ZHANG T X, et al. Species sensitivity evaluation of misgumus anguillicadatus[J]. Journal of Ecology and Rural Environment, 2019, 35(3):392-397.
    [16] LIANG K, JIANG Y, QI J, et al. Characterizing the impacts of land use on nitrate load and water yield in an agricultural watershed in Atlantic Canada[J]. Science of the Total Environment, 2020, 729: 138793.
    [17] 张懿文, 罗建中, 陈宇阳. 我国水体中硝酸盐的污染现状及危害[J]. 广州化工, 2015(4): 99-100. ZHAGN Y W, LUO J Z, CHEN Y Y. The pollution situation and harm of nitrate in water of China[J]. Guangdong Chemical Industry, 2015

    (4):99-100.
    [18] DOWNING J A, MCCLAIN M, TWILLEY R, et al. The impact of accelerating land-use change on the N-Cycle of tropical aquatic ecosystems: current conditions and projected changes[J]. Biogeochemistry, 1999, 46(1/2/3): 109-148.
    [19] 周念清, 王燕, 钱家忠, 等. 湿地氮循环及其对环境变化影响研究进展[J]. 同济大学学报(自然科学版), 2010, 38(6): 865-869. ZHOU N Q, WANG Y, QIAN J Z, et al. Advances in research on nitrogen cycle in wetlands and its influence on Environmental Change[J]. Journal of Tongji University (Natural Science), 2010, 38(6):865-869.
    [20] 李峰平, 魏红阳, 马喆, 等. 人工湿地植物的选择及植物净化污水作用研究进展[J]. 湿地科学, 2017, 15(6): 849-854.

    LI F P, WEI H Y, MA Z, et al. Research progress of selection of plants for constructed wetlands and effect of plants’ purification on sewage[J]. Wetland Science, 2017, 15(6):849-854.
    [21] LI Y Y, JIAO J X, WANG Y, et al. Characteristics of nitrogen loading and its influencing factors in several typical agricultural watersheds of subtropical China[J]. Environmental Science and Pollution Research International, 2015, 22(3): 1831-1840.
    [22] YIN C Q, ZHAO M, JIN W G, et al. A multi-pond system as a protective zone for the management of lakes in China[J]. Hydrobiologia, 1993, 251(1): 321-329.
    [23] CHEN W J, HE B, DANIEL N, et al. Farm ponds in southern China: challenges and solutions for conserving a neglected wetland ecosystem[J]. Science of the Total Environment, 2019, 659: 1322.
    [24] 申雅莉, 周脚根, 彭佩钦, 等. 亚热带源头流域梯级池塘氮磷含量的时空变异及其影响因素[J]. 农业环境科学学报, 2020, 39(10): 2420-2428.

    SHEN Y L, ZHOU J G, PENG P Q, et al. Spatio-temporal variation of nitrogen and phosphorus contents in cascade ponds in subtropical headstream watershed and its influencing factors[J]. Journal of Agro-Environment Science, 2020, 39(10):2420-2428.
    [25] ZHOU J G, WANG Y, LEI Q L. Using bioinformatics to quantify the variability and diversity of the microbial community structure in pond ecosystems of a subtropical catchment[J]. Current Bioinformatics, 2020, 15: 1178-1186.
    [26] 张敏, 谢平, 徐军, 等. 大型浅水湖泊:巢湖内源磷负荷的时空变化特征及形成机制[J]. 中国科学(D辑) 地球科学, 2005, (增刊Ⅱ): 63-72. ZHANG M, XIE P, XU J, et al. Temporal and spatial variation characteristics and formation mechanism of endogenous phosphorus load in Chaohu Lake, a large shallow lake[J]. Science in China Ser. D Earth Sciences, 2005

    , (Supplement Ⅱ):63-72.
    [27] 秦伯强, 朱广伟, 张路, 等. 大型浅水湖泊沉积物内源营养盐释放模式及其估算方法:以太湖为例[J]. 中国科学(D辑) 地球科学, 2005, (增刊Ⅱ): 33-44. QIN B Q, ZHU G W, ZHANG L, et al. Models and estimation methods of endogenous nutrient release from sediments of large shallow lakes: a case study of Taihu Lake[J]. Science in China Ser. D Earth Sciences, 2005

    , (Supplement Ⅱ):33-44.
    [28] 李媛媛, 王华, 袁伟皓, 等. 降雨变化对鄱阳湖区乐安河流域非点源产污的影响[J]. 环境工程, 2023, 41(2): 16-23.

    LI Y Y, WANG H, YUAN W H, et al. Impact of rainfall variation on non-point source pollution in Le’an River watershed, Poyang Lake basin[J]. Environmental Engineering, 2023, 41(2):16-23.
    [29] 潘成荣, 汪家权, 郑志侠, 等. 巢湖沉积物中氮与磷赋存形态研究[J]. 生态与农村环境学报, 2007, 23(1): 43-47.

    PAN C R, WANG J Q, ZHEGN Z X, et al. Forms of phosphorus and nitrogen existing in sediments in Chaohu Lake[J]. Journal of Ecology and Rural Environment, 2007, 23(1):43-47.
    [30] 金相灿, 庞燕, 王圣瑞, 等. 长江中下游浅水湖沉积物磷形态及其分布特征研究[J]. 农业环境科学学报, 2008, 27(1): 279-285.

    JIN X C, PANG Y, WANG S R, et al. Phosphorus forms and its distribution character in sediment of shallow lakes in the middle and lower reaches of the Yangtze River[J]. Journal of Agro-Environment Science, 2008, 27(1):279-285.
    [31] 梁芳源, 李鹏, 程维金, 等. 武汉城市湿地景观格局及生态系统服务功能演变轨迹与驱动机制[J]. 环境工程, 2023, 41(1): 105-111.

    LIANG F Y, LI P, CHENG W J, et al. Driving Mechanism of wetland landscape pattern and ecosystem services in Wuhan[J]. Environmental Engineering, 2023, 41(1):105-111.
    [32] 徐红灯, 席北斗, 翟丽华. 沟渠沉积物对农田排水中氨氮的截留效应研究[J]. 农业环境科学学报, 2007, 26(5): 1924-1928.

    XU H D, XI B D, ZHAI L H. Interception effect of ditch sediment on NH+4-N in agricultural drainage ditch[J]. Journal of Agro-Environment Science, 2007, 26(5):1924-1928.
    [33] LAI J S, ZOU Y, ZHANG J L, et al. Generalizing hierarchical and variation partitioning in multiple regression and canonical analysis using the Rdacca.hp R Package[J]. Methods in Ecology and Evolution, 2022, 13: 782-788.
    [34] 苏泳松. 广州海珠国家湿地公园水体氮素特征及其环境效应[D]. 广州:广州大学, 2022. SU Y S. Nitrogen Characteristics and Environmental Effects of Water in Guangzhou Haizhu National Wetland Park[D]. Guangzhou: Guangzhou University, 2022.
    [35] 康鹏亮, 黄廷林, 张海涵, 等. 西安市典型景观水体水质及反硝化细菌种群结构[J]. 环境科学, 2017, 38(12): 5174-5183.

    KANG P L, HUANG T L, ZHANG H H, et al. Water quality and diversity of denitrifier community structure of typical scenic water bodies in Xi’an[J]. Environmental Science, 2017, 38(12):5174-5183.
    [36] 李如忠, 陈慧, 刘超, 等. 合肥环城公园景观水体水质特征及环境质量评价[J]. 环境科学学报, 2020, 40(3): 1121-1129.

    LI R Z, CHEN H, LIU C, et al. Water quality characteristics and environmental quality assessment of landscape water in the round-city-park in Hefei[J]. Acta Scientiae Circumstantiae, 2020, 40(3):1121-112.
    [37] 李劢, 郭兴芳, 郑兴灿, 等. 城市景观水环境监测及富营养化评价——以天津市5处景观水体为例[J]. 环境保护科学, 2020, 46(6): 129-132

    ,148. LI M, GUO X F, ZHENG X C, et al. Environment monitoring and eutrophication evaluation of urban scenic water body——Taking five scenic water bodies in Tianjin as examples[J]. Environmental Protection Science, 2020, 46(6):129-132, 148.
    [38] 于洋. 北运河水体中氨氮的氧化过程及微生物响应特征[D]. 北京:首都师范大学, 2012. YU Y. Ammonia Oxidation Process and Microbial Response Characteristics in Beicanal Water[D]. Beijing: Capital Normal University, 2012.
    [39] WU Y H, HU Z Y, YANG L Z, et al. The removal of nutrients from non-point source wastewater by a hybrid bioreactor[J]. Bioresource Technology, 2011, 102(3): 2419-2426.
    [40] LEE S W, HWANG S J, LEE S B, et al. Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics[J]. Landscape and Urban Planning, 2009, 92(2).
    [41] 马培, 李新艳, 王华新, 等. 河流反硝化过程及其在河流氮循环与氮去除中的作用[J]. 农业环境科学学报, 2014, 33(4): 623-633.

    MA P, LI X Y, WANG H X, et al. Denitrification and its role in cycling and removal of nitrogen in river[J]. Journal of Agro-Environment Science, 2014, 33(4):623-633.
    [42] SONNEVELD B, THOTO F, HOUESSOU D, et al. The tragedy of the inland lakes[J]. International Journal of the Commons, 2019, 13: 1-28.
  • 加载中
计量
  • 文章访问数:  75
  • HTML全文浏览量:  19
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-05
  • 录用日期:  2024-04-20
  • 修回日期:  2024-02-10

目录

    /

    返回文章
    返回