| [1] |
KURYLYK B L, IRVINE D J, BENSE V F. Theory, tools, and multidisciplinary applications for tracing groundwater fluxes from temperature profiles[J]. Wiley Interdisciplinary Reviews: Water, 2019, 58(3): 1-13.
|
| [2] |
KURYLYK B L, IRVINE D J. Heat: an overlooked tool in the practicing hydrogeologist’s toolbox[J]. Groundwater, 2019,57(4):517-524.
|
| [3] |
董林垚, 唐文坚, 陈建耀, 等. 温度示踪界面水文过程研究进展及发展趋势[J]. 长江科学院院报, 2022, 39(4): 21-26.DONG L Y, TANG W J, CHEN J Y, et al. Interfacial hydrological process of heat tracing: research progresses and development trends[J]. Journal of Changjiang River Scientific Research Institute,2022, 39(4): 21-26.
|
| [4] |
傅晗昕, 冷建涛, 张田忠. 温度梯度与缺陷共同作用下的双壁碳纳米管持续驱动器件[J]. 力学季刊, 2023, 44(2): 258-268.FU H X, LENG J T, ZHANG T Z. Continuous driving based on defected double walled carbon nanotubes with temperature gradients[J]. Chinese Quarterly of Mechanics, 2023, 44(2): 258-268.
|
| [5] |
许倍源, 武丽文, 张明珠, 等. 热示踪在潜流带中的研究进展[J]. 水文, 2024, 44(2), 1-14.XU B Y, WU L W, ZHANG M Z, et al. Advances in heat tracer in hyporheic zone[J]. Journal of China Hydrology, 2024, 44(2), 1-14.
|
| [6] |
李英玉, 赵坚, 吕辉, 等. 河岸带潜流层温度示踪流速计算方法[J]. 水科学进展, 2016, 27(3): 423-429.LI Y Y, ZHAO J, LV H, et al. Investigation on temperature tracer method calculated flow rate of hyporheic layer in riparian zone[J]. Advances in Water Science, 2016, 27(3): 423-429.
|
| [7] |
KOCH F W, VOYTEK E B, DAY-LEWIS F D, et al. 1DTempPro V2: new features for inferring groundwater/surface-water exchange[J]. Groundwater, 2016, 54 (3): 434-439.
|
| [8] |
BASTOLA H, PETERSON E W. Heat tracing to examine seasonal groundwater flow beneath alow-gradient stream in rural central Illinois, USA[J]. Hydrogeology Journal, 2016, 24 (1):181-194.
|
| [9] |
SU X R, SHU L C, CHEN X H, et al. Interpreting the cross-sectional flow field in a river bank based on agenetic-algorithm two-dimensional heat-transport method (GA-VS2DH)[J]. Hydrogeology Journal, 2016, 24 (8): 2035-2047.
|
| [10] |
MUNZ M, SCHMIDT C. Estimation of vertical water fluxes from temperature time series by the inverse numerical computer program FLUX-BOT[J]. Hydrological Processes, 2017, 31 (15):2713-2724.
|
| [11] |
NARANJO R, SMITH D, LINDENBACH E. Incorporating temperature into seepage loss estimates for a large unlined irrigation canal[J]. Journal of Hydrology, 2023, 617: 129117.
|
| [12] |
SIMON N, BOUR O, FAUCHEUX M, et al. Combining passive and active distributed temperature sensing measurements to locate and quantify groundwater discharge variability into a headwater stream[J]. Hydrology and Earth System Sciences, 2022, 26(5): 1459-1479.
|
| [13] |
SHI W G, ZHAN H B, WANG Q R, et al. Quantifying vertical streambed fluxes and streambed thermal properties using heat as a tracer during extreme hydrologic events[J]. Journal of Hydrology, 2024, 629: 130553.
|
| [14] |
CHEN K W, Zhan H B, Wang Q R. An innovative solution of diurnal heat transport in streambeds with arbitrary initial condition and implications to the estimation of water flux and thermal diffusivity under transient condition[J]. Journal of Hydrology, 2018, 567: 361-369.
|
| [15] |
SCHNEIDEWIND U, VAN B M, ANIBAS C, et al. LPMLE3: a novel 1-D approach to study water flow in streambeds using heat as a tracer[J]. Water Resources Research, 2016, 52(8): 6596-6610.
|
| [16] |
李梅,温冰,应蓉蓉,等.地下水环境调查关键技术参数与工艺方法探讨[J].环境工程,2023,41(12):227-235.LI M, WEN B, YING R R, et al. Discussion on key technical parameters and process methods of groundwater environmental investigation[J]. Environmental Engineering,2023,41(12):227-235.
|
| [17] |
DING G Q, LI N, LIU B, et al. Numerical study of mixed and free convection heat transfer under ocean conditions[J]. International Journal of Heat and Mass Transfer, 2023, 203: 123811.
|
| [18] |
雷原, 庞明军. 单气泡对层流自然对流传热影响的数值研究[J]. 化学工程, 2023, 51(11): 13-19.LEI Y, PANG M J. Numerical simulation on effect of single bubble on natural convection heat transfer in laminar flow[J]. Chemical Engineering (China), 2023, 51(11): 13-19.
|
| [19] |
田兴旺, 徐振涛, 张琨, 等. 制冷剂复合强化流动沸腾传热研究进展[J]. 制冷学报, 2023, 44(6): 1-14.TIAN Y W, XU Z T, ZHANG K, et al. Research progress in composite-enhanced flow boiling heat transfer for refrigerants[J]. Journal of Refrigeration, 2023, 44(6): 1-14.
|
| [20] |
STALLMAN R W. Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature[J]. Journal of Geophysical Research, 1965, 70(12): 2821-2827.
|
| [21] |
van KAMPEN R, SCHNEIDEWIND U, ANIBAS C, et al. LPMLEn: a frequency domain method to estimate vertical streambed fluxes and sediment thermal properties in semi-infinite and bounded domains[J]. Journal of Geophysical Research, 2022,58(3): 1-13.
|
| [22] |
LUCE C H, TONINA D, APPLEBEE R, et al. Was that assumption necessary? Reconsidering boundary conditions for analytical solutions to estimate streambed fluxes[J]. Water Resources Research, 2017, 53(11): 9771-9790.
|
| [23] |
WILSON A M, WOODWARD G L, SAVIDGE W B. Using heat as a tracer to estimate the depth of rapid porewater advection below the sediment-water interface[J]. Journal of Hydrology, 2016, 538: 743-753.
|
| [24] |
SAPHORES E, LERAY S, SUÁREZ F. Groundwater-surface water exchange from temperature time series: a comparative study of heat tracer methods[J]. Journal of Hydrology, 2024: 130955.
|
| [25] |
刘华.下渗对滨海水库咸化时间尺度的影响及水交换速度的热示踪反演[D].青岛:青岛大学, 2021. LIU H. Influence of infiltration on the salinization time scale of an estuary reservoir and heat tracing of the surface-subsurface exchange[D]. Qingdao: Qingdao University, 2021.
|
| [26] |
BOERS P C M. Studying the phosphorus release from the Loosdrecht Lakes sediments, using a continuous flow system[J]. Hydrobiological Bulletin, 1986, 20(1): 51-60.
|
| [27] |
LIU H, GAO Z W, LI J. Inclusion of slow infiltration in determining the influence time of saline sediments on reservoir water[J]. Journal of Hydrology, 2021, 603: 126853.
|