中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度示踪法量化地表水-地下水交换中的自由对流效应评估

于攀文 高增文

于攀文, 高增文. 温度示踪法量化地表水-地下水交换中的自由对流效应评估[J]. 环境工程, 2025, 43(2): 31-38. doi: 10.13205/j.hjgc.202502004
引用本文: 于攀文, 高增文. 温度示踪法量化地表水-地下水交换中的自由对流效应评估[J]. 环境工程, 2025, 43(2): 31-38. doi: 10.13205/j.hjgc.202502004
YU Panwen, GAO Zengwen. Necessity of analysis of free convection effects in quantification of surface water-groundwater exchange by temperature tracer[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(2): 31-38. doi: 10.13205/j.hjgc.202502004
Citation: YU Panwen, GAO Zengwen. Necessity of analysis of free convection effects in quantification of surface water-groundwater exchange by temperature tracer[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(2): 31-38. doi: 10.13205/j.hjgc.202502004

温度示踪法量化地表水-地下水交换中的自由对流效应评估

doi: 10.13205/j.hjgc.202502004
基金项目: 

国家自然科学基金“海湾水库底边界层对水体突然泛咸的双重影响机制与效应”(51279075)

详细信息
    作者简介:

    于攀文(1997-),男,硕士,主要研究方向为水资源利用与水环境保护。1224620612@qq.com

    通讯作者:

    高增文(1974-),男,博士,副教授,主要研究方向为水资源利用与水环境保护。gaozengwen@163.com

Necessity of analysis of free convection effects in quantification of surface water-groundwater exchange by temperature tracer

  • 摘要: 温度示踪法是一种基于热运移扩散方程,通过反演确定沉积物孔隙水流速的常用方法。但实际应用中通常忽略自由对流及其效应,并且相关研究也没有探讨过这种忽略处理的合理性。设计了砂箱装置模拟沉积物-上覆水系统的自由对流现象,通过R语言程序建立一维热传输模型,探讨温度示踪法应用中考虑自由对流效应的必要性;研究中以额外的热扩散系数表达自由对流效应,并主要通过参数敏感性分析评估忽略自由对流对反演结果(流速)的影响程度。结果表明,额外热扩散系数可以达到饱和水填充物固有热扩散系数的1~6倍;参数的敏感性分析表明,55%的热扩散系数偏差可以导致约13%流速估值误差;实验条件下忽略自由对流会引起反演流速结果出现最大0.012 cm/min的偏差,这种程度的偏差将严重影响沉积物-上覆水之间热量与污染物交换通量的计算。在应用温度示踪法时宜先评估自由对流对反演结果的影响程度,并据此决定是否将其效应考虑在热传输机制内。
  • [1] KURYLYK B L, IRVINE D J, BENSE V F. Theory, tools, and multidisciplinary applications for tracing groundwater fluxes from temperature profiles[J]. Wiley Interdisciplinary Reviews: Water, 2019, 58(3): 1-13.
    [2] KURYLYK B L, IRVINE D J. Heat: an overlooked tool in the practicing hydrogeologist’s toolbox[J]. Groundwater, 2019,57(4):517-524.
    [3] 董林垚, 唐文坚, 陈建耀, 等. 温度示踪界面水文过程研究进展及发展趋势[J]. 长江科学院院报, 2022, 39(4): 21-26.

    DONG L Y, TANG W J, CHEN J Y, et al. Interfacial hydrological process of heat tracing: research progresses and development trends[J]. Journal of Changjiang River Scientific Research Institute,2022, 39(4): 21-26.
    [4] 傅晗昕, 冷建涛, 张田忠. 温度梯度与缺陷共同作用下的双壁碳纳米管持续驱动器件[J]. 力学季刊, 2023, 44(2): 258-268.

    FU H X, LENG J T, ZHANG T Z. Continuous driving based on defected double walled carbon nanotubes with temperature gradients[J]. Chinese Quarterly of Mechanics, 2023, 44(2): 258-268.
    [5] 许倍源, 武丽文, 张明珠, 等. 热示踪在潜流带中的研究进展[J]. 水文, 2024, 44(2), 1-14.

    XU B Y, WU L W, ZHANG M Z, et al. Advances in heat tracer in hyporheic zone[J]. Journal of China Hydrology, 2024, 44(2), 1-14.
    [6] 李英玉, 赵坚, 吕辉, 等. 河岸带潜流层温度示踪流速计算方法[J]. 水科学进展, 2016, 27(3): 423-429.

    LI Y Y, ZHAO J, LV H, et al. Investigation on temperature tracer method calculated flow rate of hyporheic layer in riparian zone[J]. Advances in Water Science, 2016, 27(3): 423-429.
    [7] KOCH F W, VOYTEK E B, DAY-LEWIS F D, et al. 1DTempPro V2: new features for inferring groundwater/surface-water exchange[J]. Groundwater, 2016, 54 (3): 434-439.
    [8] BASTOLA H, PETERSON E W. Heat tracing to examine seasonal groundwater flow beneath alow-gradient stream in rural central Illinois, USA[J]. Hydrogeology Journal, 2016, 24 (1):181-194.
    [9] SU X R, SHU L C, CHEN X H, et al. Interpreting the cross-sectional flow field in a river bank based on agenetic-algorithm two-dimensional heat-transport method (GA-VS2DH)[J]. Hydrogeology Journal, 2016, 24 (8): 2035-2047.
    [10] MUNZ M, SCHMIDT C. Estimation of vertical water fluxes from temperature time series by the inverse numerical computer program FLUX-BOT[J]. Hydrological Processes, 2017, 31 (15):2713-2724.
    [11] NARANJO R, SMITH D, LINDENBACH E. Incorporating temperature into seepage loss estimates for a large unlined irrigation canal[J]. Journal of Hydrology, 2023, 617: 129117.
    [12] SIMON N, BOUR O, FAUCHEUX M, et al. Combining passive and active distributed temperature sensing measurements to locate and quantify groundwater discharge variability into a headwater stream[J]. Hydrology and Earth System Sciences, 2022, 26(5): 1459-1479.
    [13] SHI W G, ZHAN H B, WANG Q R, et al. Quantifying vertical streambed fluxes and streambed thermal properties using heat as a tracer during extreme hydrologic events[J]. Journal of Hydrology, 2024, 629: 130553.
    [14] CHEN K W, Zhan H B, Wang Q R. An innovative solution of diurnal heat transport in streambeds with arbitrary initial condition and implications to the estimation of water flux and thermal diffusivity under transient condition[J]. Journal of Hydrology, 2018, 567: 361-369.
    [15] SCHNEIDEWIND U, VAN B M, ANIBAS C, et al. LPMLE3: a novel 1-D approach to study water flow in streambeds using heat as a tracer[J]. Water Resources Research, 2016, 52(8): 6596-6610.
    [16] 李梅,温冰,应蓉蓉,等.地下水环境调查关键技术参数与工艺方法探讨[J].环境工程,2023,41(12):227-235.

    LI M, WEN B, YING R R, et al. Discussion on key technical parameters and process methods of groundwater environmental investigation[J]. Environmental Engineering,2023,41(12):227-235.
    [17] DING G Q, LI N, LIU B, et al. Numerical study of mixed and free convection heat transfer under ocean conditions[J]. International Journal of Heat and Mass Transfer, 2023, 203: 123811.
    [18] 雷原, 庞明军. 单气泡对层流自然对流传热影响的数值研究[J]. 化学工程, 2023, 51(11): 13-19.

    LEI Y, PANG M J. Numerical simulation on effect of single bubble on natural convection heat transfer in laminar flow[J]. Chemical Engineering (China), 2023, 51(11): 13-19.
    [19] 田兴旺, 徐振涛, 张琨, 等. 制冷剂复合强化流动沸腾传热研究进展[J]. 制冷学报, 2023, 44(6): 1-14.

    TIAN Y W, XU Z T, ZHANG K, et al. Research progress in composite-enhanced flow boiling heat transfer for refrigerants[J]. Journal of Refrigeration, 2023, 44(6): 1-14.
    [20] STALLMAN R W. Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature[J]. Journal of Geophysical Research, 1965, 70(12): 2821-2827.
    [21] van KAMPEN R, SCHNEIDEWIND U, ANIBAS C, et al. LPMLEn: a frequency domain method to estimate vertical streambed fluxes and sediment thermal properties in semi-infinite and bounded domains[J]. Journal of Geophysical Research, 2022,58(3): 1-13.
    [22] LUCE C H, TONINA D, APPLEBEE R, et al. Was that assumption necessary? Reconsidering boundary conditions for analytical solutions to estimate streambed fluxes[J]. Water Resources Research, 2017, 53(11): 9771-9790.
    [23] WILSON A M, WOODWARD G L, SAVIDGE W B. Using heat as a tracer to estimate the depth of rapid porewater advection below the sediment-water interface[J]. Journal of Hydrology, 2016, 538: 743-753.
    [24] SAPHORES E, LERAY S, SUÁREZ F. Groundwater-surface water exchange from temperature time series: a comparative study of heat tracer methods[J]. Journal of Hydrology, 2024: 130955.
    [25] 刘华.下渗对滨海水库咸化时间尺度的影响及水交换速度的热示踪反演[D].青岛:青岛大学, 2021. LIU H. Influence of infiltration on the salinization time scale of an estuary reservoir and heat tracing of the surface-subsurface exchange[D]. Qingdao: Qingdao University, 2021.
    [26] BOERS P C M. Studying the phosphorus release from the Loosdrecht Lakes sediments, using a continuous flow system[J]. Hydrobiological Bulletin, 1986, 20(1): 51-60.
    [27] LIU H, GAO Z W, LI J. Inclusion of slow infiltration in determining the influence time of saline sediments on reservoir water[J]. Journal of Hydrology, 2021, 603: 126853.
  • 加载中
计量
  • 文章访问数:  106
  • HTML全文浏览量:  24
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-06
  • 录用日期:  2024-08-08
  • 修回日期:  2024-07-17

目录

    /

    返回文章
    返回