中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滨海湿地水文连通修复对生态系统功能提升的研究进展与挑战

庞礼铧 崔保山 马旭 刘泽正

庞礼铧, 崔保山, 马旭, 刘泽正. 滨海湿地水文连通修复对生态系统功能提升的研究进展与挑战[J]. 环境工程, 2025, 43(2): 167-176. doi: 10.13205/j.hjgc.202502017
引用本文: 庞礼铧, 崔保山, 马旭, 刘泽正. 滨海湿地水文连通修复对生态系统功能提升的研究进展与挑战[J]. 环境工程, 2025, 43(2): 167-176. doi: 10.13205/j.hjgc.202502017
PANG Lihua, CUI Baoshan, MA Xu, LIU Zezheng. Research progress and challenges: Improving ecosystem functions of coastal wetlands by coastal restoration incorporating hydrological connectivity[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(2): 167-176. doi: 10.13205/j.hjgc.202502017
Citation: PANG Lihua, CUI Baoshan, MA Xu, LIU Zezheng. Research progress and challenges: Improving ecosystem functions of coastal wetlands by coastal restoration incorporating hydrological connectivity[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(2): 167-176. doi: 10.13205/j.hjgc.202502017

滨海湿地水文连通修复对生态系统功能提升的研究进展与挑战

doi: 10.13205/j.hjgc.202502017
基金项目: 

国家自然科学基金重点项目(42330705,U2243208)

国家自然科学基金青年项目(42306187)

详细信息
    作者简介:

    庞礼铧(2001-),男,硕士研究生,主要研究方向为海岸动力过程。panglh3@mail2.sysu.edu.cn

    通讯作者:

    刘泽正(1991-),男,副教授,博士生导师,主要研究方向为滨海湿地生态修复与功能提升。liuzzh23@mail.sysu.edu.cn

Research progress and challenges: Improving ecosystem functions of coastal wetlands by coastal restoration incorporating hydrological connectivity

  • 摘要: 随着全球滨海湿地面积的损失和生态系统功能的持续退化,利用水文连通修复来提升与改善滨海湿地生态系统功能已成为全球的重要策略。通过梳理Web of Science数据库中1950—2024年的7225篇文献,揭示了全球滨海湿地水文连通修复的时空分布特征,归纳了陆向水文连通修复和海向水文连通修复的主要方法,以及滨海湿地水文连通修复对初级生产力、海岸防护、碳储存和生物多样性保护等关键生态系统功能的影响机理和研究进展;从影响因素众多、恢复周期漫长、响应过程多变和功能权衡复杂等视角总结了当前利用滨海湿地水文连通提升生态系统功能的挑战。针对当前的研究进展和存在的问题,展望了未来的研究趋势,可为解决滨海湿地生态系统功能提升面临的基础科学问题提供支持。
  • [1] 崔保山, 蔡燕子, 谢湉, 等. 湿地水文连通的生态效应研究进展及发展趋势[J]. 北京师范大学学报 (自然科学版), 2016, 52(6): 738-746. CUI B, CAI Y, XIE T, et al. Ecological effects of wetland hydrological connectivity: problems and prospects[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(6): 738-746.
    [2] BRACKEN L J, WAINWRIGHT J, ALI G, et al. Concepts of hydrological connectivity: research approaches, pathways and future agendas[J]. Earth-Science Reviews, 2013, 119: 17-34.
    [3] LIU Z, FAGHERAZZI S, CUI B. Success of coastal wetlands restoration is driven by sediment availability[J]. Communications Earth & Environment, 2021, 2(1): 44.
    [4] EZCURRA E, BARRIOS E, EZCURRA P, et al. A natural experiment reveals the impact of hydroelectric dams on the estuaries of tropical rivers[J]. Science Advances, 2019, 5(3): eaau9875.
    [5] LIU Z, FAGHERAZZI S, LI J, et al. Mismatch between watershed effects and local efforts constrains the success of coastal salt marsh vegetation restoration[J]. Journal of Cleaner Production, 2021, 292: 126103.
    [6] SU J, FRIESS D A, GASPARATOS A. A meta-analysis of the ecological and economic outcomes of mangrove restoration[J]. Nature Communications, 2021, 12(1): 5050.
    [7] BAYRAKTAROV E, SAUNDERS M I, ABDULLAH S, et al. The cost and feasibility of marine coastal restoration[J]. Ecological Applications, 2016, 26(4): 1055-1074.
    [8] CUI B, YANG Q, YANG Z, ZHANG K. Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China[J]. Ecological Engineering, 2009, 35(7): 1090-1103.
    [9] TEMMERMAN S, MEIRE P, BOUMA T J, et al. Ecosystem-based coastal defence in the face of global change[J]. Nature, 2013, 504(7478): 79-83.
    [10] CARLE M V, SASSER C E and ROBERTS H H. Accretion and vegetation community change in the Wax Lake Delta following the historic 2011 Mississippi River flood[J]. Journal of Coastal Research, 2015, 31(3): 569-587.
    [11] COTTON I, FORSTER J, LORENZONI I, et al. Challenges to anticipatory coastal adaptation for transformative nature-based solutions[J]. Global Environmental Change, 2024, 88: 102893.
    [12] SILVER B P, HUDSON J M, LOHR S C, et al. Short-term response of a coastal wetland fish assemblage to tidal regime restoration in Oregon[J]. Journal of Fish and Wildlife Management, 2017, 8(1): 193-208.
    [13] LIU Z, CUI B, HE Q. Shifting paradigms in coastal restoration: six decades’ lessons from China[J]. Science of the Total Environment, 2016, 566: 205-214.
    [14] LEFCHECK J S, ORTH R J, DENNISON W C, et al. Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region[J]. Proceedings of the National Academy of Sciences, 2018, 115(14): 3658-3662.
    [15] ESTEVES L S, WILLIAMS J J. Managed realignment in Europe: a synthesis of methods, achievements, and challenges[J]. Living Shorelines, 2017: 157-182.
    [16] WOLTERS M, GARBUTT A, BAKKER J P. Salt-marsh restoration: evaluating the success of de-embankments in north-west Europe[J]. Biological Conservation, 2005, 123(2): 249-268.
    [17] JACOBS S, BEAUCHARD O, STRUYF E, et al. Restoration of tidal freshwater vegetation using controlled reduced tide (CRT) along the Schelde Estuary (Belgium)[J]. Estuarine, Coastal and Shelf Science, 2009, 85(3): 368-376.
    [18] LIU Z, FAGHERAZZI S, HE Q, et al. A global meta-analysis on the drivers of salt marsh planting success and implications for ecosystem services[J]. Nature Communications, 2024, 15(1): 3643.
    [19] BALKE T, HERMAN P M, BOUMA T J. Critical transitions in disturbance-driven ecosystems: identifying windows of opportunity for recovery[J]. Journal of Ecology, 2014, 102(3): 700-708.
    [20] LECK M A. Dispersal potential of a tidal river and colonization of a created tidal freshwater marsh[J]. AoB Plants, 2013, 5: pls050.
    [21] BURDICK D M, DIONNE M, BOUMANS R, et al. Ecological responses to tidal restorations of two northern New England salt marshes[J]. Wetlands Ecology and Management, 1996, 4: 129-144.
    [22] WARREN R S, FELL P E, ROZSA R, et al. Salt marsh restoration in Connecticut: 20 years of science and management[J]. Restoration Ecology, 2002, 10(3): 497-513.
    [23] LEWIS R R, GILMORE R G. Important considerations to achieve successful mangrove forest restoration with optimum fish habitat[J]. Bulletin of Marine Science, 2007, 80(3): 823-837.
    [24] MOSSMAN H L, BROWN M J, DAVY A J, et al. Constraints on salt marsh development following managed coastal realignment: dispersal limitation or environmental tolerance?[J]. Restoration Ecology, 2012, 20(1): 65-75.
    [25] O’BRIEN E L, ZEDLER J B. Accelerating the restoration of vegetation in a southern California salt marsh[J]. Wetlands Ecology and Management, 2006, 14: 269-286.
    [26] CHANG E R, VEENEKLAAS R M, BAKKER J P, et al. What factors determined restoration success of a salt marsh ten years after de-embankment?[J]. Applied Vegetation Science, 2016, 19(1): 66-77.
    [27] STOORVOGEL M M, TEMMERMAN S, OOSTERLEE L, et al. Nature-based shoreline protection in newly formed tidal marshes is controlled by tidal inundation and sedimentation rate[J]. Limnology and Oceanography, 2024.
    [28] SADAT-NOORI M, RANKIN C, RAYNER D, et al. Coastal wetlands can be saved from sea level rise by recreating past tidal regimes[J]. Scientific reports, 2021, 11(1): 1196.
    [29] SPENCER T, FRIESS D, MÖLLER I, et al. Surface elevation change in natural and re-created intertidal habitats, eastern England, UK, with particular reference to Freiston Shore[J]. Wetlands Ecology and Management, 2012, 20: 9-33.
    [30] WALLACE K J, CALLAWAY J C, ZEDLER J B. Evolution of tidal creek networks in a high sedimentation environment: a 5-year experiment at Tijuana Estuary, California[J]. Estuaries, 2005, 28: 795-811.
    [31] CAHOON D R, LYNCH J C, ROMAN C T, et al. Evaluating the relationship among wetland vertical development, elevation capital, sea-level rise, and tidal marsh sustainability[J]. Estuaries and Coasts, 2019, 42: 1-15.
    [32] HAGGER V, STEWART-SINCLAIR P, ROSSINI R A, et al. Lessons learned on the feasibility of coastal wetland restoration for blue carbon and co-benefits in Australia[J]. Journal of Environmental Management, 2024, 369: 122287.
    [33] WANG H, WANG R, YU Y, et al. Soil organic carbon of degraded wetlands treated with freshwater in the Yellow River Delta, China[J]. Journal of Environmental Management, 2011, 92(10): 2628-2633.
    [34] POPPE K L, RYBCZYK J M. Tidal marsh restoration enhances sediment accretion and carbon accumulation in the Stillaguamish River estuary, Washington[J]. PLoS One, 2021, 16(9): e0257244.
    [35] ARIAS-ORTIZ A, OIKAWA P Y, CARLIN J, et al. Tidal and nontidal marsh restoration: a trade-off between carbon sequestration, methane emissions, and soil accretion[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(12): e2021JG006573.
    [36] EAGLE M J, KROEGER K D, SPIVAK A C, et al. Soil carbon consequences of historic hydrologic impairment and recent restoration in coastal wetlands[J]. Science of the Total Environment, 2022, 848: 157682.
    [37] WOLLENBERG J T, OLLERHEAD J, CHMURA G L. Rapid carbon accumulation following managed realignment on the Bay of Fundy[J]. PLoS One, 2018, 13(3): e0193930.
    [38] BURDEN A, GARBUTT R, EVANS C, et al. Carbon sequestration and biogeochemical cycling in a saltmarsh subject to coastal managed realignment[J]. Estuarine, Coastal and Shelf Science, 2013, 120: 12-20.
    [39] HUFF T P, FEAGIN R A. Restoring tidal equilibrium: removing a hydrologic barrier and lowering salinity at the Magnolia Inlet, Texas[J]. Journal of Coastal Research, 2017, (77): 97-103.
    [40] WIESEBRON L E, CHENG C H, DE VET P L M, et al. How restoration engineering measures can enhance the ecological value of intertidal flats[J]. Restoration Ecology, 2024: e14247.
    [41] DAVID A T, ELLINGS C S, WOO I, et al. Foraging and growth potential of juvenile Chinook salmon after tidal restoration of a large river delta[J]. Transactions of the American Fisheries Society, 2014, 143(6): 1515-1529.
    [42] ROCHLIN I, JAMES-Pirri M-J, ADAMOWICZ S C, et al. The effects of integrated marsh management (IMM) on salt marsh vegetation, nekton, and birds[J]. Estuaries and Coasts, 2012, 35: 727-742.
    [43] BOWRON T, NEATT N, VAN PROOSDIJ D, et al. Macro-tidal salt marsh ecosystem response to culvert expansion[J]. Restoration Ecology, 2011, 19(3): 307-322.
    [44] MORRIS R L, KONLECHNER T M, GHISALBERTI M, et al. From grey to green: efficacy of eco-engineering solutions for nature-based coastal defence[J]. Global change biology, 2018, 24(5): 1827-1842.
    [45] 仝川, 罗敏, 陈鹭真, 等. 滨海蓝碳湿地碳汇速率测定方法及中国的研究现状和挑战[J]. 生态学报, 2023, 43(17): 6937-6950.

    TONG C, LUO M, CHEN L, et al. Methods of carbon sink rate measurement of coastal blue carbon wetland ecosystems, current situation and challenges in China[J]. Acta Ecologica Sinica, 2023, 43(17): 6937-6950.
    [46] ARMITAGE A R, JENSEN S M, YOON J E, et al. Wintering shorebird assemblages and behavior in restored tidal wetlands in southern California[J]. Restoration Ecology, 2007, 15(1): 139-148.
    [47] ROMAN C T, BURDICK D M. Tidal Marsh Restoration: A Synthesis of Science and Management[M]. 2012.
    [48] ARMITAGE A R, FONG P. Gastropod colonization of a created coastal wetland: potential influences of habitat suitability and dispersal ability[J]. Restoration Ecology, 2004, 12(3): 391-400.
    [49] HAVENS K J, VARNELL L M, WATTS B D. Maturation of a constructed tidal marsh relative to two natural reference tidal marshes over 12 years[J]. Ecological Engineering, 2002, 18(3): 305-315.
    [50] GARBUTT R, READING C, WOLTERS M, et al. Monitoring the development of intertidal habitats on former agricultural land after the managed realignment of coastal defences at Tollesbury, Essex, UK[J]. Marine Pollution Bulletin, 2006, 53(1/2/3/4): 155-164.
    [51] BARKOWSKI J, KOLDITZ K, BRUMSACK H, et al. The impact of tidal inundation on salt marsh vegetation after de-embankment on Langeoog Island, Germany—six years time series of permanent plots[J]. Journal of Coastal Conservation, 2009, 13: 185-206.
    [52] BROOKS K L, MOSSMAN H L, CHITTY J L, et al. Limited vegetation development on a created salt marsh associated with over-consolidated sediments and lack of topographic heterogeneity[J]. Estuaries and Coasts, 2015, 38: 325-336.
    [53] WOLTERS M, GARBUTT A, BAKKER J P. Plant colonization after managed realignment: the relative importance of diaspore dispersal[J]. Journal of Applied Ecology, 2005, 42(4): 770-777.
    [54] PARAMOR O, HUGHES R. Restriction of Spartina anglica (CE Hubbard) marsh development by the infaunal polychaete Nereis diversicolor (OF Müller)[J]. Estuarine, Coastal and Shelf Science, 2007, 71(1/2): 202-209.
    [55] WOLTERS M, GARBUTT A, BEKKER R M, et al. Restoration of salt-marsh vegetation in relation to site suitability, species pool, and dispersal traits[J]. Journal of Applied Ecology, 2008, 45(3): 904-912.
    [56] VIRGIN S D, BECK A D, BOONE L K, et al. A managed realignment in the upper Bay of Fundy: community dynamics during salt marsh restoration over 8 years in a megatidal, ice-influenced environment[J]. Ecological Engineering, 2020, 149: 105713.
    [57] MOSSMAN H L, DAVY A J, GRANT A. Does managed coastal realignment create salt marshes with ‘equivalent biological characteristics’ to natural reference sites?[J]. Journal of Applied Ecology, 2012, 49(6): 1446-1456.
    [58] GARBUTT A, WOLTERS M. The natural regeneration of salt marsh on formerly reclaimed land[J]. Applied Vegetation Science, 2008, 11(3): 335-344.
    [59] SIEVERS M, CONNOLLY R M, FINLAYSON K A, et al. Enhanced but highly variable biodiversity outcomes from coastal restoration: a global synthesis[J]. One Earth, 2024, 7(4): 623-634.
    [60] ELPHICK C S, MEIMAN S, RUBEGA M A. Tidal-flow restoration provides little nesting habitat for a globally vulnerable saltmarsh bird[J]. Restoration Ecology, 2015, 23(4): 439-446.
    [61] CANALES-DELGADILLO J C, PEREZ-CEBALLOS R, ZALDIVAR-JIMENEZ M A, et al. The effect of mangrove restoration on avian assemblages of a coastal lagoon in southern Mexico[J]. PeerJ, 2019, 7: e7493.
    [62] CURADO G, FIGUEROA E, SÁNCHEZ M I, et al. Avian communities in Spartina maritima restored and non-restored salt marshes[J]. Bird Study, 2013, 60(2): 185-194.
    [63] VAN LOON-STEENSMA J M, VELLINGA P. Trade-offs between biodiversity and flood protection services of coastal salt marshes[J]. Current Opinion in Environmental Sustainability, 2013, 5(3/4): 320-326.
  • 加载中
计量
  • 文章访问数:  150
  • HTML全文浏览量:  36
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-05
  • 录用日期:  2025-01-10
  • 修回日期:  2024-12-20

目录

    /

    返回文章
    返回