中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

台风过程中红树林海岸防护功能研究:以广东阳江海陵岛为例

张黄琛 冯孟佳 熊兰兰 薛力铭 徐天平 胡湛 刘泽正

张黄琛, 冯孟佳, 熊兰兰, 薛力铭, 徐天平, 胡湛, 刘泽正. 台风过程中红树林海岸防护功能研究:以广东阳江海陵岛为例[J]. 环境工程, 2025, 43(2): 177-185. doi: 10.13205/j.hjgc.202502018
引用本文: 张黄琛, 冯孟佳, 熊兰兰, 薛力铭, 徐天平, 胡湛, 刘泽正. 台风过程中红树林海岸防护功能研究:以广东阳江海陵岛为例[J]. 环境工程, 2025, 43(2): 177-185. doi: 10.13205/j.hjgc.202502018
ZHANG Huangchen, FENG Mengjia, XIONG Lanlan, XUE Liming, XU Tianping, HU Zhan, LIU Zezheng. Coastal defense in typhoon by mangroves: A case study of Hailing Island, Yangjiang, Guangdong[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(2): 177-185. doi: 10.13205/j.hjgc.202502018
Citation: ZHANG Huangchen, FENG Mengjia, XIONG Lanlan, XUE Liming, XU Tianping, HU Zhan, LIU Zezheng. Coastal defense in typhoon by mangroves: A case study of Hailing Island, Yangjiang, Guangdong[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(2): 177-185. doi: 10.13205/j.hjgc.202502018

台风过程中红树林海岸防护功能研究:以广东阳江海陵岛为例

doi: 10.13205/j.hjgc.202502018
基金项目: 

广东省自然科学基金杰出青年项目“广东省红树林生态海岸防护体系的构建和减灾效能应用研究”(2024B1515020066)

国家自然科学基金面上项目“波流斜交流态下红树林植被消浪机理研究”(42176202)

广东省自然资源厅2024年海洋生态修复综合管理技术支撑专项资金项目“广东省典型红树林海岸防灾减灾功能与效益研究”(440000240000000003967)

详细信息
    作者简介:

    张黄琛(1990-),男,博士,主要从事海洋生态学研究。zhhc0516@126.com

    通讯作者:

    熊兰兰(1986-),女,博士。290836778@qq.com

Coastal defense in typhoon by mangroves: A case study of Hailing Island, Yangjiang, Guangdong

  • 摘要: 红树林生态系统位于陆海生态廊道的关键节点,对于维系海洋水文-生物连通具有重要作用。受数据可利用性与观测手段限制,台风过程中红树林调节水动力、实现海岸防护的能力仍不明确,这制约了海岸防护功能提升的工程实践。以广东阳江海陵岛红树林为例,基于Delft3D FM-Delft3D耦合模型以及现场实测资料,模拟分析了极端条件(2024年超强台风“摩羯”)下,红树林对风暴潮水位和波高的衰减作用。结果表明,利用该模型较好地再现了沿外海-光滩-红树林这一环境梯度的风暴增水和波浪传播过程,红树林的波高衰减率为(0.29~0.64)%/m,水位衰减率为1.46~18.69 cm/km,高于光滩和无植被情景。植被对波高衰减贡献达43%~69%,远高于对水位的衰减贡献(0.2%~32%)。研究揭示了红树林在台风过程中对水位和波高衰减能力的变化特征,为基于自然的海岸防护体系建设提供了参考。
  • [1] 张小霞, 林鹏智. 滨海植物的海岸带减灾特性研究综述[J]. 海洋通报, 2023, 42(5): 585-600.

    ZHANG X X, LIN P Z. A review of coastal disaster mitigation by vegetation[J]. Marine Science Bulletin, 2023, 42(5): 585-600.
    [2] 陈新平, 王斌, 尹子祺, 等.红树林防灾减灾功能研究进展及保护修复建议[J]. 海洋通报, 2023, 42(4): 469-480.

    CHEN X P, WANG B, YIN Z Q, et al. Research progress on mangrove forest disaster prevention and mitigation functions and suggestions for protection and restoration[J]. Marine Science Bulletin, 2023, 42(4): 469-480.
    [3] 戴志军, 周晓妍, 王杰, 等. 红树林潮滩沉积动力研究进展与展望[J]. 热带海洋学报, 2021, 40(3): 69-75.

    DAI Z J, ZHOU X Y, WANG J, et al. Review and prospect of mangrove tidal flat sedimentary dynamics[J]. Journal of Tropical Oceanography, 2021, 40(3): 69-75.
    [4] HORSTMAN E M, DOHMEN-JANSSEN C M, NARRA P M F, et al. Wave attenuation in mangroves: a quantitative approach to field observations[J]. Coastal Engineering, 2014, 94: 47-62.
    [5] 王日明, 戴志军, 黄鹄, 等. 南流江河口桐花树生物动力地貌过程研究[J]. 海洋学报, 2021, 43(9): 102-114.

    WANG R M, DAI Z J, HUANG H, et al. Research on bio-morphodynamic processes of Aegiceras corniculatum in the Nanliu River Estuary[J]. Haiyang Xuebao, 2021, 43(9): 102-114.
    [6] ZHANG K, LIU H, LI Y, et al. 2012. The role of mangroves in attenuating storm surges[J]. Estuarine, Coastal and Shelf Science, 2012, 102/103: 11-23.
    [7] 朱俊宁, 宋德海, 陈光程, 等. 红树林植株形态及种植密度对消波能力影响的数值模拟研究[J]. 应用海洋学学报, 2023, 42(2): 264-276.

    ZHU J N, SONG D H, CHEN G C, et al. Numerical simulation on the effects of mangrove morphology and planting density on wave attenuation capacity[J]. Journal of Applied Oceanography, 2023, 42(2): 264-276.
    [8] 英晓明, 赵明利. 广东省风暴潮海洋灾害特征及风险防控对策研究[J]. 海洋开发与管理, 2020, 37(6): 30-33.

    YING X M, ZHAO M L. The characteristics of storm surge marine disaster and countermeasures in Guangdong Province[J]. Ocean Development and Management, 2020, 37(6): 30-33.
    [9] 宿海良, 东高红, 王猛, 等. 1949—2018年登陆台风的主要特征及灾害成因分析研究[J]. 环境科学与管理, 2020, 45(5): 128-131.

    SU H L, DONG G H, WANG M, et al. Analysis on main characteristics and casues of landfall typhoons in recent 70 years[J]. Environmental Science and Management, 2020, 45(5): 128-131.
    [10] van ZELST V T M, DIJKSTRA J T, van WESENBEECK B K, et al. Cutting the costs of coastal protection by integrating vegetation in flood defences[J]. Nature Communications, 2021, 12(1): 6533.
    [11] 贾明明, 王宗明, 毛德华, 等. 面向可持续发展目标的中国红树林近50年变化分析[J]. 科学通报, 2021, 66(30): 3886-3901.

    JIA M M, WANG Z M, MAO D H, et al. Spatial-temporal changes of China’s mangrove forests over the past 50 years: an analysis towards the Sustainable Development Goals (SDGs)[J]. China Science Bulletin, 2021, 66(30): 3886-3901.
    [12] 韩鹏, 郭桂祯, 孙宁, 等. 广东省台风灾害时空格局及影响因素研究[J]. 灾害学, 2022, 37(3): 112-117.

    HAN P, GUO G Z, SUN N, et al. Spatiotemporal patterns and influencing factors of typhoon disasters in Guangdong Province, China[J]. Journal of Catastrophology, 2022, 37(3): 112-117.
    [13] 殷洁, 吴绍洪, 戴尔阜. 广东省台风灾害经济损失风险评估[J]. 资源与生态学报(英文), 2012, 3(2): 144-150. YIN J, WU S H, DAI E F. Assessment of economic damage risks from typhoon disasters in Guangdong, China[J]. Journal of Resources and Ecology, 2012, 3(2): 144-150.
    [14] PRONK M, HOOIJER A, EILANDER D, et al. DeltaDTM: a global coastal digital terrain model[J]. Scientific Data, 2024, 11(1): 273.
    [15] POWELL M D, HOUSTON S H, REINHOLD T A. Hurricane Andrew’s landfall in South Florida. Part Ⅰ: standardizing measurements for documentation of surface wind fields[J]. Weather and Forecasting, 1996, 11(3): 304-328.
    [16] WILLOUGHBY H, RAHN M. Parametric representation of the primary hurricane vortex. Part Ⅰ: observations and evaluation of the Holland (1980) model[J]. Monthly Weather Review, 2004, 132(12): 3033-3048.
    [17] YIN X, ZHANG R, XU X, et al. Wind and wave under strong tropical cyclones[C]//2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2016: 4607-4610.
    [18] KOCH E W, BARBIER E B, SILLIMAN B R, et al. Non-linearity in ecosystem services: temporal and spatial variability in coastal protection[J]. Frontiers in Ecology and the Environment, 2009, 7(1): 29-37.
    [19] TEMMERMAN S, HORSTMAN E M, KRAUSS K W, et al. Marshes and mangroves as nature-based coastal storm buffers[J]. Annual Review of Marine Science, 2023, 15(15): 95-118.
    [20] GEDAN K B, KIRWAN M L, WOLANSKI E, et al. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm[J]. Climatic Change, 2011, 106(1): 7-29.
    [21] NARAYAN S, BECK M W, REGUERO B G, et al. The effectiveness, costs and coastal protection benefits of natural and nature-based defences[J]. PLOS One, 2016, 11(5): e0154735.
    [22] MONTGOMERY J M, BRYAN K R, HORSTMAN E M, et al. Attenuation of tides and surges by mangroves: contrasting case studies from New Zealand[J]. Water, 2018, 10(9): 1119.
    [23] DEB M, BENEDICT J J, SUN N, et al. Estuarine hurricane wind can intensify surge-dominated extreme water level in shallow and converging coastal systems[J]. Natural Hazards and Earth System Sciences, 2024, 24: 2461-2479.
    [24] ZHOU X, DAI Z, PANG W, et al. Wave attenuation over mangroves in the Nanliu Delta, China[J]. Frontiers in Marine Science, 2022, 9: 874818.
    [25] BEST Ü S, van der WEGEN M, DIJKSTRA J, et al. Wave attenuation potential, sediment properties and mangrove growth dynamics data over Guyana’s intertidal mudflats: assessing the potential of mangrove restoration works[J]. Earth System Science Data, 2022, 14: 1-24.
    [26] LOPEZ-ARIAS F, MAZA M, CALLEJA F, et al. Integrated drag coefficient formula for estimating the wave attenuation capacity of Rhizophora sp. mangrove forests[J]. Frontiers in Marine Science, 2024, 11: 1383368.
    [27] LIU H, ZHANG K, LI Y, et al. Numerical study of the sensitivity of mangroves in reducing storm surge and flooding to hurricane characteristics in southern Florida[J]. Continental Shelf Research, 2013, 64: 51-65.
    [28] MAZDA Y, MAGI M, IKEDA Y, et al. Wave reduction in a mangrove forest dominated by Sonneratia sp[J]. Wetlands Ecology and Management, 2006, 14(4): 365-378.
    [29] QUARTEL S, KROON A, AUGUSTINUS P G E F, et al. Wave attenuation in coastal mangroves in the Red River Delta, Vietnam[J]. Journal of Asian Earth Sciences, 2007, 29(4): 576-584.
    [30] CHEN Q, LI Y, KELLY D M, et al. Improved modeling of the role of mangroves in storm surge attenuation[J]. Estuarine, Coastal and Shelf Science, 2021, 260: 107515.
    [31] ZHOU X, DAI Z, CARNIELLO L, et al. Linkage between mangrove wetland dynamics and wave attenuation during a storm: a case study of the Nanliu Delta, China[J]. Marine Geology, 2022, 454: 106946.
    [32] GIJSMAN R, HORSTMAN E M, van der WAL D, et al. Nature-based engineering: a review on reducing coastal flood risk with mangroves[J]. Frontiers in Marine Science, 2021, 8: 702412.
    [33] ZHANG R, CHEN Y, LEI J, et al. Experimental investigation of wave attenuation by mangrove forests with submerged canopies[J]. Coastal Engineering, 2023, 186: 104403.
    [34] HENDERSON S M, NORRIS B K, MULLARNEY J C, et al. Wave-frequency flows within a near-bed vegetation canopy[J]. Continental Shelf Research, 2017, 147: 91-101.
    [35] MONTGOMERY J M, BRYAN K R, MULLARNEY J C, et al. Attenuation of storm surges by coastal mangroves[J]. Geophysical Research Letters, 2019, 46(5): 2680-2689.
    [36] LOVELOCK C E, FELLER I C, REEF R, et al. Mangrove dieback during fluctuating sea levels[J]. Scientific Reports, 2017, 7(1): 1680.
    [37] HICKEY S M, RADFORD B, CALLOW J N, et al. ENSO feedback drives variations in dieback at a marginal mangrove site[J]. Scientific Reports, 2021, 11(1): 8130.
  • 加载中
计量
  • 文章访问数:  126
  • HTML全文浏览量:  22
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-02
  • 录用日期:  2025-01-06
  • 修回日期:  2024-12-25

目录

    /

    返回文章
    返回