中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器视觉的生化池监测技术

张亮 杨博文 刘宇衡 张雨 高瑜 李佳诚 李俊辰 林斯杰

张亮, 杨博文, 刘宇衡, 张雨, 高瑜, 李佳诚, 李俊辰, 林斯杰. 基于机器视觉的生化池监测技术[J]. 环境工程, 2025, 43(3): 1-10. doi: 10.13205/j.hjgc.202503001
引用本文: 张亮, 杨博文, 刘宇衡, 张雨, 高瑜, 李佳诚, 李俊辰, 林斯杰. 基于机器视觉的生化池监测技术[J]. 环境工程, 2025, 43(3): 1-10. doi: 10.13205/j.hjgc.202503001
ZHANG Liang, YANG Bowen, LIU Yuheng, ZHANG Yu, GAO Yu, LI Jiacheng, LI Junchen, LIN Sijie. A monitoring technique for bioreactors based on machine vision[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(3): 1-10. doi: 10.13205/j.hjgc.202503001
Citation: ZHANG Liang, YANG Bowen, LIU Yuheng, ZHANG Yu, GAO Yu, LI Jiacheng, LI Junchen, LIN Sijie. A monitoring technique for bioreactors based on machine vision[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(3): 1-10. doi: 10.13205/j.hjgc.202503001

基于机器视觉的生化池监测技术

doi: 10.13205/j.hjgc.202503001
基金项目: 

国家重点研发计划“基于智能感知物联网的生态环境高密度监测关键技术研发”(2021YFC1809001)

详细信息
    作者简介:

    张亮(1986—),男,教授,主要研究方向为污水生物处理新技术和新工艺开发优化及智能控制。zliang@bjut.edu.cn

    通讯作者:

    张亮(1986—),男,教授,主要研究方向为污水生物处理新技术和新工艺开发优化及智能控制。zliang@bjut.edu.cn

A monitoring technique for bioreactors based on machine vision

  • 摘要: 生化池的在线监测对污水处理厂的稳定运行具有重要意义。现有生化池监测依赖流量计、传感器以及人工巡查和综合判断。为降低生化池人工巡检的工作量,提升监测的连续性和准确性,提出基于机器视觉的监测方案,并以曝气量预测为目标,考察了该技术方案的可行性。以曝气量1,2,3,4,5 L/min的小试规模生化池为预测对象,通过采集生化池的曝气图像、构建数据库、使用卷积神经网络提取特征、建立模型的监测框架,实现了污水处理过程中曝气量变化的自动感知。模型分析表明,测试集的预测精度达到99%,且模型预测精度稳定性较高,满足自动监测的需求。进一步考察机器视觉技术从小试装置迁移到中试规模生化池的可行性,证明了该方法在不同生化池中均具有可行性,表现出良好的应用潜力。该研究利用硬件(摄像头)和软件(机器学习模型),实现生化池运行关键信息的在线监测和异常识别,可实现对人工巡视的部分替代,可为污水处理厂的智慧化运行提供可行思路。
  • [1] GRESCH M,ARMBRUSTER M,BRAUN D,et al. Effects of aeration patterns on the flow field in wastewater aeration tanks[J]. Water Research,2011,45(2):810-818.
    [2] PIOTROWSKI R,UJAZDOWSKI T. Designing control strategies of aeration system in biological WWTP[J]. Energies,2020,13(14):3619.
    [3] LI J,LIU Y,JIANG H,et al. A multi-view image feature fusion network applied in analysis of aeration velocity for WWTP[J]. Water,2022,14(3):345.
    [4] VILLEZ K,VANROLLEGHEM P A,COROMINAS L. Optimal flow sensor placement on wastewater treatment plants[J]. Water Research,2016,101:75-83.
    [5] LIU C M,CHAI L P,LI Y,et al. Aeration state detection and prediction analysis based on image recognition and regression calculation[C]// Procedings of the 2022 China Automation,Xiamen,2022. 刘成明,柴立平,李跃,等. 基于图像识别与回归计算的曝气状态检测与预测分析[C]// 2022中国自动化大会,厦门,2022.
    [6] LI Y H,WANG X,ZHAO Z X,et al. Lagoon water quality monitoring based on digital image analysis and machine learning estimators[J]. Water Research,2020,172:115471.
    [7] KANG D,LIN Q,XU D,et al. Color characterization of anammox granular sludge:Chromogenic substance,microbial succession and state indication[J]. Science of the Total Environment,2018,642:1320-1327.
    [8] LEE W H,PARK C Y,DIAZ D,et al. Predicting bilgewater emulsion stability by oil separation using image processing and machine learning[J]. Water Research,2022,223:118977.
    [9] RAWAT W,WANG Z H. Deep convolutional neural networks for image classification:A comprehensive review[J]. Neural Computation,2017,29(9):2352-2449.
    [10] KRAUSE L M K,KOC J,ROSENHAHN B,et al. Fully convolutional neural network for detection and counting of diatoms on coatings after short-term field exposure[J]. Environmental Science& Technology,2020,54(16):10022-10030.
    [11] MORENO-RODENAS A M,DUINMEIJER A,CLEMENS F. Deep-learning based monitoring of FOG layer dynamics in wastewater pumping stations[J]. Water Research,2021,202:117482.
    [12] WU Y,ZHANG X,XIAO Y,et al. Attention neural network for water image classification under IoT environment[J]. Applied Sciences,2020,10(3):909.
    [13] HASSAN S I,DANG L M,MEHMOOD I,et al. Underground sewer pipe condition assessment based on convolutional neural networks[J]. Automation in Construction,2019,106:102849.
    [14] BAI R C,WANG K,YU F W. Intelligent sorting system for household waste based on ResNet_Vd model[J]. Environmental Engineering,2023,41(S2):1030-1033. 柏润泚,王凯,俞范文. 基于ResNet_Vd模型的生活垃圾智能分拣系统[J]. 环境工程,2023,41(S2):1030-1033.
    [15] LIU Z,GAO D M. Application and comparison of different deep learning models in the identification of kitchen waste types[J]. Environmental Engineering,2024,42(03):254-260. 刘志,高东明. 不同深度学习模型在餐厨垃圾类型识别中的应用与比较[J]. 环境工程,2024,42(3):254-260.
    [16] JIN P W,YAO Y,LIANG X Y,et al. Research progress on garbage image recognition[J]. Environmental Engineering,2022,40(1):196-206. 金佩薇,姚燕,梁晓瑜,等. 垃圾图像识别研究进展[J]. 环境工程,2022,40(1):196-206.
    [17] PYO J,CHO K H,KIM K,et al. Cyanobacteria cell prediction using interpretable deep learning model with observed,numerical,and sensing data assemblage[J]. Water Research,2021,203:117483.
    [18] LI Y Y,LIU H L. Prediction of total phosphorus in rivers using time convolutional network based on attention mechanism[J]. Environmental Engineering,2023,41(5):163-171. 黎园园,刘海隆. 基于注意力机制的时间卷积网络河流总磷预测[J]. 环境工程,2023,41(5):163-171.
    [19] YU S T,LIU P. Prediction of PM2.5 concentration in Beijing based on long short term memory network-convolutional neural network(LSTM-CNN)[J]. Environmental Engineering,2020,38(6):176-180,166. 于伸庭,刘萍. 基于长短期记忆网络-卷积神经网络(LSTM-CNN)的北京市PM2.5浓度预测[J]. 环境工程,2020,38(6):176-180,166.
    [20] IOFFE S,SZEGEDY C. Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]// proceedings of the 32nd International Conference on Machine Learning,Lille,2015.
    [21] HINTON G E,SRIVASTAVA N,KRIZHEVSKY A,et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. Computer Science,2012,3(4):212-223.
    [22] KRIZHEVSKY A,SUTSKEVER I,HINTON G. ImageNet classification with deep convolutional neural networks[J]. Advances in neural information processing systems,2012,25(2):84-90.
    [23] YANG Y. An evaluation of statistical approaches to text categorization[J]. Procedings of the AMIA Annual Fall Symposium,1999,1(1/2):358-362.
    [24] ZEILER M D,FERGUS R. Visualizing and understanding convolutional networks[J]. European Conference on Computer Vision,2014,8689:818-833.
    [25] ZHOU B,KHOSLA A,LAPEDRIZA A,et al. Learning deep features for discriminative localization[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Seattle,2016.
    [26] HUANG Y H. Research and Implementation of Sludge Settling Ratio Recognition based on Computer Vision[D]. Hangzhou:Zhejiang Gongshang University,2023. 黄勇昊. 基于计算机视觉的污泥沉降比识别研究与实现[D]. 杭州:浙江工商大学,2023.
    [27] GAO Y T. Research on Data-Driven Intelligent Recognition and Control Optimization of Sludge Expansion[D]. Beijing:North China University of Technology,2024. 郜煜涛. 基于数据驱动的污泥膨胀智能识别与控制优化研究[D]. 北京:北方工业大学,2024.
    [28] WANG J H,LIAO W S,LI H M,et al. Data augmentation method supporting intelligent management of sewage treatment plants under data defect conditions[J]. Environmental Engineering,2024,42(6):153-159. 王建辉,廖万山,李慧敏,等. 数据缺陷条件下支持污水处理厂智能管理的数据增强方法[J]. 环境工程,2024,42(6):153-159.
    [29] WANG Y,SU X L,LIU J,et al. AI based sewage treatment monitoring and automatic regulation technology[J]. New Technologies and Products in China,2024,(13):115-117,127. 王勇,苏晓亮,刘佳,等. 基于AI的污水处理监控与自动调节技术[J]. 中国新技术新产品,2024,(13):115-117,127.
    [30] QI M,CHEN Y B,ZHANG X P,et al. Construction and application of a smart sewage treatment plant control platform based on multi-source information fusion[J]. Water Supply and Drainage,2020,56(1):120-124. 齐鸣,陈燕波,张辛平,等. 基于多源信息融合的智慧污水处理厂管控平台建设与应用[J]. 给水排水,2020,56(1):120-124.
    [31] WANG X S,CHEN Q S,SHEN Y W,et al. Multi-data fusion online diagnostic system for wastewater plant fan failures[J]. Industrial Control Computers,2022,35(1):31-34. 汪喜生,陈秋忠,沈怡雯,等. 多数据融合的污水厂风机故障在线诊断系统[J]. 工业控制计算机,2022,35(1):31-34.
    [32] XIAO L Z,HU F. Research on spam detection based on LGD-YOLO high-precision lightweight target detection network[J]. Environmental Engineering,2024,42(6):169-177. 肖立中,胡凡. 基于LGD-YOLO高精度轻量化目标检测网络的垃圾检测研究[J]. 环境工程,2024,42(6):169-177.
    [33] WANG L,YU K,CHEN H,et al. Application of unmanned inspection of water supply pipe network based on the fusion of fiber optic sensing and video AI technology[J]. Environmental Engineering,2023,41(11):59-63. 王蕾,俞坤,陈辉,等. 基于光纤传感与视频AI技术融合的供水管网无人化巡检应用[J]. 环境工程,2023,41(11):59-63.
  • 加载中
计量
  • 文章访问数:  159
  • HTML全文浏览量:  39
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-29
  • 录用日期:  2025-01-03
  • 修回日期:  2024-12-10
  • 网络出版日期:  2025-06-07
  • 刊出日期:  2025-03-01

目录

    /

    返回文章
    返回