中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

尿液水解率对镁空气燃料电池体系营养物质回收性能的影响

蔡博华 伍迪 邓迎迎 胡淑捷 张梦玥 刘元

蔡博华, 伍迪, 邓迎迎, 胡淑捷, 张梦玥, 刘元. 尿液水解率对镁空气燃料电池体系营养物质回收性能的影响[J]. 环境工程, 2025, 43(3): 11-21. doi: 10.13205/j.hjgc.202503002
引用本文: 蔡博华, 伍迪, 邓迎迎, 胡淑捷, 张梦玥, 刘元. 尿液水解率对镁空气燃料电池体系营养物质回收性能的影响[J]. 环境工程, 2025, 43(3): 11-21. doi: 10.13205/j.hjgc.202503002
CAI Bohua, WU Di, DENG Yingying, HU Shujie, ZHANG Mengyue, LIU Yuan. Effect of urine hydrolysis degree on the recovery performance of nutrients in magnesium-air fuel cell system[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(3): 11-21. doi: 10.13205/j.hjgc.202503002
Citation: CAI Bohua, WU Di, DENG Yingying, HU Shujie, ZHANG Mengyue, LIU Yuan. Effect of urine hydrolysis degree on the recovery performance of nutrients in magnesium-air fuel cell system[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(3): 11-21. doi: 10.13205/j.hjgc.202503002

尿液水解率对镁空气燃料电池体系营养物质回收性能的影响

doi: 10.13205/j.hjgc.202503002
基金项目: 

国家自然科学基金优秀青年科学基金项目“电化学废水资源循环”(52122007)

详细信息
    作者简介:

    蔡博华(2001-),男,硕士研究生,主要研究方向为电化学水处理技术。caibohua@cigit.ac.cn

    通讯作者:

    刘元(1983-),男,研究员,主要研究方向为电化学水处理与资源化原理及技术。liuyuan@cigit.ac.cn

Effect of urine hydrolysis degree on the recovery performance of nutrients in magnesium-air fuel cell system

  • 摘要: 从尿液中回收农业所需的磷(P)、氮(N)等资源,有利于缓解当今我国面临的肥料生产量与矿产储量不平衡的问题。基于镁空气燃料电池(MAFC)原理的技术已经实现了从完全水解尿液中高效去除并回收P资源,但存在尿素资源浪费问题。尿液水解释放出的NH4+和OH-会引发水质改变,可能会对MAFC中P回收产生影响,且过度水解也不利于尿素资源化。考察了尿液水解率对MAFC体系中P回收性能的影响,揭示了尿液水解率对MAFC中含P沉淀物生成的影响机制,以期在尽可能保留尿素的同时,实现P的高效去除与回收。结果表明:水解率为10%的尿液可满足鸟粪石沉淀所需的NH4+与适宜的pH环境。对不同水解率尿液反应60 min后收集的沉淀的表征结果表明:不同水解率尿液的沉淀组成具有显著差异。通过对10%水解尿液体系中所回收沉淀物进行分析,发现其反应40 min后收集的沉淀物中鸟粪石质量分数可达96%。研究结果可为通过控制尿液水解率回收高品质含磷缓释肥提供参考。
  • [1] PATEL A,MUNGRAY A A,MUNGRAY A K. Technologies for the recovery of nutrients,water and energy from human urine:a review[J]. Chemosphere,2020,259:127372.
    [2] ELSER J,BENNETT E. A broken biogeochemical cycle[J]. Nature,2011,478(7367):29-31.
    [3] YANG S S,WANG L,WANG Y X,et al. Breakthrough in deep ore prospecting of Yangchang phosphate deposit,the largest concealed monomer phosphorus-rich deposit in Asia,and its significance[J]. Acta Petrologica Et Mineralogica,2024,43(5):1073-1085. 杨淑胜,王路,王云晓,等. 亚洲最大规模隐伏单体富磷矿床羊场磷矿深部找矿突破及其意义[J]. 岩石矿物学杂志,2024,43(5):1073-1085.
    [4] Ministry of Industry and Information Technology,et al. Implementation Plan for Promoting Efficient and High-value Utilization of Phosphorus Resources[R](2023-12-29)[2024-11-11] 工业和信息化部等八部门. 推进磷资源高效高值利用实施方案[R].(2023-12-29)[2024-11-11]
    [5] State Council Information Office of the People's Republic of China. White Paper:China's Green Development in the New Era[R](2023-01-19)[2024-11-13]. 中华人民共和国国务院新闻办公室. 白皮书:新时代的中国绿色发展[R].(2023-01-19)[2024-11-13].
    [6] CHRISTIAENS M E R,DE VRIEZE J,CLINCKEMAILLIE L,et al. Anaerobic ureolysis of source-separated urine for NH3 recovery enables direct removal of divalent ions at the toilet[J]. Water Research,2019,148:97-105.
    [7] LARSEN T A,HOFFMANN S,LÜTHI C,et al. Emerging solutions to the water challenges of an urbanizing world[J]. Science,2016,352(6288):928-933.
    [8] LARSEN T A,GUJER W. The concept of sustainable Urban Water Management[J]. Water Science and Technology,1997,35(9):3-10.
    [9] AGUADO D,BARAT R,BOUZAS A,et al. P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources[J]. Science of The Total Environment,2019,672:88-96.
    [10] LIU Q,SUN W,ZENG Q,et al. Integrated processes for simultaneous nitrogen,phosphorus,and potassium recovery from urine:A review[J]. Journal of Water Process Engineering,2024,59:104975.
    [11] WEI S P,VAN ROSSUM F,VAN DE POL G J,et al. Recovery of phosphorus and nitrogen from human urine by struvite precipitation,air stripping and acid scrubbing:A pilot study[J]. Chemosphere,2018,212:1030-1037.
    [12] REINHARD C T,PLANAVSKY N J,GILL B C,et al. Evolution of the global phosphorus cycle[J]. Nature,2017,541(7637):386-389.
    [13] TONG Y,WANG M,PEÑUELAS J,et al. Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions[J]. Proceedings of the National Academy of Sciences,2020,117(21):11566-11572.
    [14] YANG H R,LIU Y,HU S J,et al. Advanced electrochemical membrane technologies for near-complete resource recovery and zero-discharge of urine:Performance optimization and evaluation[J]. Water Research,2024,263:122175.
    [15] GAO Y,LIANG B,CHEN H,et al. An experimental study on the recovery of potassium(K)and phosphorous(P)from synthetic urine by crystallization of magnesium potassium phosphate[J]. Chemical Engineering Journal,2018,337:19-29.
    [16] LEI Y,SONG B,VAN DER WEIJDEN R D,et al. Electrochemical Induced Calcium Phosphate Precipitation:Importance of Local pH[J]. Environmental Science& Technology,2017,51(19):11156-11164.
    [17] WANG F,WEI J,ZOU X,et al. Enhanced electrochemical phosphate recovery from livestock wastewater by adjusting pH with plant ash[J]. Journal of Environmental Management,2019,250:109473.
    [18] KIM J H,AN B min,LIM D H,et al. Electricity production and phosphorous recovery as struvite from synthetic wastewater using magnesium-air fuel cell electrocoagulation[J]. Water Research,2018,132:200-210.
    [19] LIU Y,DENG Y Y,ZHANG Q,et al. Overview of recent developments of resource recovery from wastewater via electrochemistry-based technologies[J]. Science of the Total Environment,2021,757:143901.
    [20] SUN H,MOHAMMED A N,LIU Y. Phosphorus recovery from source-diverted blackwater through struvite precipitation[J]. Science of the Total Environment,2020,743:140747.
    [21] HUANG H,ZHANG P,ZHANG Z,et al. Simultaneous removal of ammonia nitrogen and recovery of phosphate from swine wastewater by struvite electrochemical precipitation and recycling technology[J]. Journal of Cleaner Production,2016,127:302-310.
    [22] YEE R A,LEIFELS M,SCOTT C,et al. Evaluating Microbial and Chemical Hazards in Commercial Struvite Recovered from Wastewater[J]. Environmental Science& Technology,2019,53(9):5378-5386.
    [23] HE L F,HU S J,WU D,et al. Comparative study on the nutrient recovery from source-separated urine using magnesium-air fuel cell in different operating modes[J]. Process Safety and Environmental Protection,2024,185:164-172.
    [24] LIAO M,LIU Y,TIAN E,et al. Phosphorous removal and high-purity struvite recovery from hydrolyzed urine with spontaneous electricity production in Mg-air fuel cell[J]. Chemical Engineering Journal,2020,391:123517.
    [25] KISHIKAWA H,EBBERYD A,RÖMLING U,et al. Control of pathogen growth and biofilm formation using a urinary catheter that releases antimicrobial nitrogen oxides[J]. Free Radical Biology and Medicine,2013,65:1257-1264.
    [26] LI P,CHEN L,DING Y,et al. Phosphorus recovery from urine using cooling water system effluent as a precipitant[J]. Journal of Environmental Management,2019,244:391-398.
    [27] MUSVOTO E V,WENTZEL M C,EKAMA G A. Integrated chemical–physical processes modelling—II. simulating aeration treatment of anaerobic digester supernatants[J]. Water Research,2000,34(6):1868-1880.
    [28] MONBALLIU A,GHYSELBRECHT K,PINOY L,et al. Phosphorous recovery as calcium phosphate from UASB effluent after nitrification with or without subsequent denitrification[J]. Journal of Environmental Chemical Engineering,2020,8(5):104119.
    [29] WEI L,HONG T,LI X,et al. New insights into the adsorption behavior and mechanism of alginic acid onto struvite crystals[J]. Chemical Engineering Journal,2019,358:1074-1082.
    [30] TAN Y,ZOU Z,QU J,et al. Mechanochemical conversion of chrysotile asbestos tailing into struvite for full elements utilization as citric-acid soluble fertilizer[J]. Journal of Cleaner Production,2021,283:124637.
    [31] ZHAO T L,LI H,HUANG Y R,et al. Microbial mineralization of struvite:Salinity effect and its implication for phosphorus removal and recovery[J]. Chemical Engineering Journal,2019,358:1324-1331.
    [32] FROST R L,WEIER M L,ERICKSON K L. Thermal decomposition of struvite[J]. Journal of Thermal Analysis and Calorimetry,2004,76(3):1025-1033.
    [33] DIANAWATI D,MISHRA V,SHAH N P. Role of calcium alginate and mannitol in protecting bifidobacterium[J]. Applied and Environmental Microbiology,2012,78(19):6914-6921.
    [34] XU K,WANG C,WANG X,et al. Laboratory experiments on simultaneous removal of K and P from synthetic and real urine for nutrient recycle by crystallization of magnesium–potassium–phosphate–hexahydrate in a draft tube and baffle reactor[J]. Chemosphere,2012,88(2):219-223.
  • 加载中
计量
  • 文章访问数:  93
  • HTML全文浏览量:  26
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-20
  • 录用日期:  2024-12-23
  • 修回日期:  2024-12-20
  • 网络出版日期:  2025-06-07
  • 刊出日期:  2025-03-01

目录

    /

    返回文章
    返回