中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双极膜的工作原理及其在废水处理与资源回收领域的应用研究进展

汪晟 王力

汪晟, 王力. 双极膜的工作原理及其在废水处理与资源回收领域的应用研究进展[J]. 环境工程, 2025, 43(3): 57-69. doi: 10.13205/j.hjgc.202503005
引用本文: 汪晟, 王力. 双极膜的工作原理及其在废水处理与资源回收领域的应用研究进展[J]. 环境工程, 2025, 43(3): 57-69. doi: 10.13205/j.hjgc.202503005
WANG Sheng, WANG Li. Bipolar membrane’s mechanisms and its recent advances in wastewater treatment and resource recovery[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(3): 57-69. doi: 10.13205/j.hjgc.202503005
Citation: WANG Sheng, WANG Li. Bipolar membrane’s mechanisms and its recent advances in wastewater treatment and resource recovery[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(3): 57-69. doi: 10.13205/j.hjgc.202503005

双极膜的工作原理及其在废水处理与资源回收领域的应用研究进展

doi: 10.13205/j.hjgc.202503005
基金项目: 

上海市科委国际合作项目(23230710800);国家海外高层次人才项目

详细信息
    作者简介:

    汪晟(1999-),男,博士研究生,主要研究方向为双极膜电渗析污水处理与资源化技术。wang_s@tongji.edu.cn

    通讯作者:

    王力(1988-),男,博士,教授,主要研究方向为膜法污水处理与资源化技术。li_wang_1@tongji.edu.cn

Bipolar membrane’s mechanisms and its recent advances in wastewater treatment and resource recovery

  • 摘要: 双极膜是一种独特的离子交换膜,其结构由阳离子交换层和阴离子交换层组成,能够通过水解离机制生成质子和氢氧根离子。这一特性使得双极膜在诸多领域中具有广泛的应用前景,包括(生物)化学工业、食品加工、环境保护以及能源转换与储存等。由于其独特的结构,双极膜在电化学应用中表现优异,例如在燃料电池和电解水制氢等领域。在反向偏置条件下,双极膜能有效促进水分子的解离,从而提高电化学反应效率。双极膜在废水处理与资源回收领域展现出显著潜力。通过双极膜电渗析技术,可以有效地将高盐废水中的无机盐转化为相应的酸和碱,实现资源的回收与利用,此外,并可选择性地回收氨氮。相比传统工艺,双极膜展现了出显著的技术进步和环境友好性。该文章回顾了过去双极膜相关的研究,全面阐述了双极膜的特性、理论模型及其应用现状,并介绍了双极膜的新兴应用及其面临的一系列挑战,为未来的发展指明方向。
  • [1] BLOMMAERT M A,AILI D,TUFA R A,et al. Insights and challenges for applying bipolar membranes in advanced electrochemical energy systems[J]. ACS Energy Letters,2021,6(7):2539-2548.
    [2] PARNAMAE R,MAREEV S,NIKONENKO V,et al. Bipolar membranes:A review on principles,latest developments,and applications[J]. Journal of Membrane Science,2021,617,118538.
    [3] BUI J C,LEES E W,PANT L M,et al. Continuum modeling of porous electrodes for electrochemical synthesis[J]. Chemical Reviews,2022,122(12):11022-11084.
    [4] BUI J C,KIM C,KING A J,et al. Engineering catalyst-electrolyte microenvironments to optimize the activity and selectivity for the electrochemical reduction of CO2 on Cu and Ag[J]. Accounts of Chemical Research,2022,55(4):484-494.
    [5] SHARIFIAN R,WAGTERVELD R M,DIGDAYA I A,et al. Electrochemical carbon dioxide capture to close the carbon cycle[J]. Energy& Environmental Science,2021,14(2):781-814.
    [6] BUI J C,LEES E W,MARIN D H,et al. Multi-scale physics of bipolar membranes in electrochemical processes[J]. Nature Chemical Engineering,2024,1(1):45-60.
    [7] MITCHELL J B,CHEN L,LANGWORTHY K,et al. Catalytic proton-hydroxide recombination for forward-bias bipolar membranes[J]. ACS Energy Letters,2022,7(11):3967-3973.
    [8] YAN Z,ZHU L,LI Y C,et al. The balance of electric field and interfacial catalysis in promoting water dissociation in bipolar membranes[J]. Energy& Environmental Science,2018,11(8):2235-2245.
    [9] DE K R SY F,ZEIGERSON E. Bipolar membranes made of a single polyolephine sheet[J]. Israel Journal of Chemistry,1971,9(4):483-497.
    [10] FRILETTE,VINCENT J. Preparation and characterization of bipolar ion exchange membranes[J]. Journal of Physical Chemistry,1956,60(4):435-439.
    [11] DAI L P,ZHU H Q,KE X,et al. Removal of hexavalent chromium from aqueous solution using bipolar membrane electrodialysis technique[J]. Environmental Engineering,2021,39(11):89-95. 戴丽萍,朱汉权,柯雄,等. 双极膜电渗析法去除水溶液中的Cr(Ⅵ)[J]. 环境工程,2021,39(11):89-95.
    [12] YANG H,LIU Y,HU S,et al. Advanced electrochemical membrane technologies for near-complete resource recovery and zero-discharge of urine:Performance optimization and evaluation[J]. Water Research,2024,263,122175.
    [13] XU T W,YANG W H,HE B L. Bipolar membrane water dissociation phenomenon:analysis of physical configuration,ion transfer,and hydrolysis dissociation pressure drop of bipolar membrane[J]. Science in China(Series B). 1999(6):481-488.. 徐铜文,杨伟华,何炳林. 双极膜水解离现象:双极膜的物理构型、离子传递及其水解离压降分析[J]. 中国科学(B辑),1999(6):481-488.
    [14] YU W,ZHANG Z,LUO F,et al. Tailoring high-performance bipolar membrane for durable pure water electrolysis[J]. Nature Communications,2024,15(1):10220.
    [15] ASHRAFI A M,GUPTA N,NEDELA D. An investigation through the validation of the electrochemical methods used for bipolar membranes characterization[J]. Journal of Membrane Science,2017,544:195-207.
    [16] KOVALCHUK V I,ZHOLKOVSKIJ E K,AKSENENKO E V,et al. Ionic transport across bipolar membrane and adjacent Nernst layers[J]. Journal of Membrane Science,2006,284(1/2):255-266.
    [17] WILHELM F G,PUNT I,van der Vegt N,et al. Asymmetric bipolar membranes in acid-base electrodialysis[J]. Industrial& Engineering Chemistry Research,2002,41(3):579-586.
    [18] BALSTER J,SRINKANTHARAJAH S,SUMBHARAJU R,et al. Tailoring the interface layer of the bipolar membrane[J]. Journal of Membrane Science,2010,365(1/2):389-398.
    [19] KROL J J,WESSLING M,STRATHMANN H. Chronopotentiometry and overlimiting ion transport through monopolar ion exchange membranes[J]. Journal of Membrane Science,1999,162(1-2):155-164.
    [20] MARTI-Calatayud M C,BUZZI D C,GARCIA-Gabaldon M,et al. Ion transport through homogeneous and heterogeneous ion-exchange membranes in single salt and multicomponent electrolyte solutions[J]. Journal of Membrane Science,2014,466:45-57.
    [21] BUTYLSKII D Y,MAREEV S A,PISMENSKAYA N D,et al. Phenomenon of two transition times in chronopotentiometry of electrically inhomogeneous ion exchange membranes[J]. Electrochimica Acta,2018,273:289-299.
    [22] CHOI J H,MOON S H. Pore size characterization of cation-exchange membranes by chronopotentiometry using homologous amine ions[J]. Journal of Membrane Science,2001,191(1/2):225-236.
    [23] WILHELM F G,van der VEGT N,STRATHMANN H,et al. Current-voltage behaviour of bipolar membranes in concentrated salt solutions investigated with chronopotentiometry[J]. Journal of Applied Electrochemistry,2002,32(4):455-465.
    [24] WILHELM F G,van der VEGT N,WESSLING M,et al. Chronopotentiometry for the advanced current-voltage characterisation of bipolar membranes[J]. Journal of Electroanalytical Chemistry,2001,502(1/2):152-166.
    [25] HURWITZ H D,DIBIANI R. Experimental and theoretical investigations of steady and transient states in systems of ion exchange bipolar membranes[J]. Journal of Membrane Science,2004,228(1):17-43.
    [26] PARK J S,CHILCOTT T C,COSTER H,et al. Characterization of BSA-fouling of ion-exchange membrane systems using a subtraction technique for lumped data[J]. Journal of Membrane Science,2005,246(2):137-144.
    [27] ZABOLOTSKII V,SHELDESHOV N,MELNIKOV S. Effect of cation-exchange layer thickness on electrochemical and transport characteristics of bipolar membranes[J]. Journal of Applied Electrochemistry,2013,43(11):1117-1129.
    [28] BLOMMAERT M A,VERMAAS D A,IZELAAR B,et al. Electrochemical impedance spectroscopy as a performance indicator of water dissociation in bipolar membranes[J]. Journal of Materials Chemistry A,2019,7(32):19060-19069.
    [29] SISTAT P,KOZMAI A,PISMENSKAYA N,et al. Low-frequency impedance of an ion-exchange membrane system[J]. Electrochimica Acta,2008,53(22):6380-6390.
    [30] ZABOLOTSKII V,SHELDESHOV N,MELNIKOV S. Heterogeneous bipolar membranes and their application in electrodialysis[J]. Desalination,2014,342:183-203.
    [31] GOYAL P,KUSOGLU A,WEBER A Z. Coalescing cation selectivity approaches in ionomers[J]. ACS Energy Letters,2023,8(3):1551-1566.
    [32] KUSOGLU A,WEBER A Z. New insights into perfluorinated sulfonic-acid lonomers[J]. Chemical Reviews,2017,117(3):987-1104.
    [33] CROTHERS A R,DARLING R M,KUSOGLU A,et al. Theory of multicomponent phenomena in cation-exchange membranes:Part I. thermodynamic model and validation[J]. Journal of the Electrochemical Society,2020,167,013547.
    [34] PARASURAMAN A,LIM T M,MENICTAS C,et al. Review of material research and development for vanadium redox flow battery applications[J]. Electrochimica Acta,2013,101:27-40.
    [35] BUI J C,LUCAS E,LEES E W,et al. Analysis of bipolar membranes for electrochemical CO2 capture from air and oceanwater[J]. Energy& Environmental Science,2023,16(11):5076-5095.
    [36] BUI J C,DIGDAYA I,XIANG C,et al. Understanding multi-ion transport mechanisms in bipolar membranes[J]. ACS Applied Materials& Interfaces,2020,12(47):52509-52526.
    [37] DINH H Q,TOH W L,CHU A T,et al. Neutralization short-circuiting with weak electrolytes erodes the efficiency of bipolar membranes[J]. ACS Applied Materials& Interfaces,2023,15(3):4001-4010.
    [38] PARNAMAE R,TEDESCO M,WU M,et al. Origin of limiting and overlimiting currents in bipolar membranes[J]. Environmental Science& Technology,2023,57(26):9664-9674.
    [39] MAREEV S A,EVDOCHENKO E,WESSLING M,et al. A comprehensive mathematical model of water splitting in bipolar membranes:Impact of the spatial distribution of fixed charges and catalyst at bipolar junction[J]. Journal of Membrane Science,2020,603:118010.
    [40] LUCAS E,BUI J C,STOVALL T N,et al. Asymmetric bipolar membrane for high current density electrodialysis operation with exceptional stability[J]. ACS Energy Letters,2024,9(11):5596-5605.
    [41] BUI J C,CORPUS K R M,BELL A T,et al. On the nature of field-enhanced water dissociation in bipolar membranes[J]. The Journal of Physical Chemistry C,2021,125(45):24974-24987.
    [42] PENG J,ROY A L,GREENBAUM S G,et al. Effect of CO2 absorption on ion and water mobility in an anion exchange membrane[J]. Journal of Power Sources,2018,380:64-75.
    [43] EHLINGER V M,CROTHERS A R,KUSOGLU A,et al. Modeling proton-exchange-membrane fuel cell performance/degradation tradeoffs with chemical scavengers[J]. Journal of Physics-Energy,2020,2:044006.
    [44] WENG L,BELL A T,WEBER A Z. A systematic analysis of Cu-based membrane-electrode assemblies for CO2 reduction through multiphysics simulation[J]. Energy& Environmental Science,2020,13(10):3592-3606.
    [45] PETROV K,BUI J C,BAUMGARTNER L,et al. Anion-exchange membranes with internal microchannels for water control in CO2 electrolysis[J]. Sustainable Energy& Fuels,2022,6(22):5077-5088.
    [46] MARIN D H,PERRYMAN J T,HUBERT M A,et al. Hydrogen production with seawater-resilient bipolar membrane electrolyzers[J]. Joule,2023,7(4):765-781.
    [47] MARIONI N,ZHANG Z,ZOFCHAK E S,et al. Impact of ion-ion correlated motion on salt transport in solvated ion exchange membranes.[J]. ACS Macro Letters,2022,11(11):1258-1264.
    [48] CROTHERS A R,DARLING R M,KUSHNER D I,et al. Theory of multicomponent phenomena in cation-exchange membranes:Part III. transport in vanadium redox-flow-battery separators[J]. Journal of the Electrochemical Society,2020,167:013549.
    [49] FONG K D,BERGSTROM H K,MCCLOSKEY B D,et al. Transport phenomena in electrolyte solutions:Nonequilibrium thermodynamics and statistical mechanics[J]. AICHE Journal,2020,66(12):e17091.
    [50] FONG K D,SELF J,MCCLOSKEY B D,et al. Ion correlations and their impact on transport in polymer-based electrolytes[J]. Macromolecules,2021,54(6):2575-2591.
    [51] ZHANG H,CHENG D,XIANG C,et al. Tuning the interfacial electrical field of bipolar membranes with temperature and electrolyte concentration for enhanced water dissociation[J]. ACS Sustainable Chemistry& Engineering,2023,11(21):8044-8054.
    [52] KAISER V,BRAMWELL S T,HOLDSWORTH P C,et al. Onsager's Wien effect on a lattice[J]. Nat Mater,2013,12(11):1033-1037.
    [53] CHEN L,XU Q,OENER S Z,et al. Design principles for water dissociation catalysts in high-performance bipolar membranes.[J]. Nature Communications,2022,13:3846.
    [54] LIN M,DIGDAYA I A,XIANG C. Modeling the electrochemical behavior and interfacial junction profiles of bipolar membranes at solar flux relevant operating current densities[J]. Sustainable Energy& Fuels,2021,5:2149-2158.
    [55] CHEN L,XU Q,BOETTCHER S W. Kinetics and mechanism of heterogeneous voltage-driven water-dissociation catalysis[J]. Joule,2023,7(8):1867-1886.
    [56] TEDESCO M,HAMELERS H V M,BIESHEUVEL P M. Nernst-Planck transport theory for(reverse)electrodialysis:I. Effect of co-ion transport through the membranes[J]. Journal of Membrane Science,2016,510:370-381.
    [57] SONIN A A,PROBSTEIN R F. A hydrodynamic theory of desalination by electrodialysis[J]. Desalination,1968,5(3):293-329.
    [58] STRATHMANN H,RAPP H J,BAUER B,et al. Theoretical and practical aspects of preparing bipolar membranes[J]. Desalination,1993,90(1/2/3):303-323.
    [59] STRATHMANN H,KROL J J,RAPP H J,et al. Limiting current density and water dissociation in bipolar membranes[J]. Journal of Membrane Science,1997,125(1):123-142.
    [60] MAURO A. Space charge regions in fixed charge membranes and the associated property of capacitance[J]. Biophysical Journal,1962,2:179-198.
    [61] BALSTER J,SUMBHARAJU R,SRIKANTHARAJAH S,et al. Asymmetric bipolar membrane:A tool to improve product purity[J]. Journal of Membrane Science,2007,287(2):246-256.
    [62] PALEOLOGOU M,THIBAULT A,WONG P Y,et al. Enhancement of the current efficiency for sodium hydroxide production from sodium sulphate in a two-compartment bipolar membrane electrodialysis system[J]. Separation and Purification Technology,1997,11(3):159-171.
    [63] RAUCQ D,POURCELLY G,GAVACH C. Production of sulphuric acid and caustic soda from sodium sulphate by electromembrane processes:Comparison between electro-electrodialysis and electrodialysis on bipolar membrane[J]. Desalination,1993,91(2):163-175.
    [64] EGOROV E N,SVITTSOV A A,DUDNIK S N,et al. Fractionation of multicomponent solutions by electrodialysis with bipolar membranes[J]. Petroleum Chemistry,2012,52:583-592.
    [65] NIEWSKI J W,NIEWSKA G W,WINNICKI T. Application of bipolar electrodialysis to the recovery of acids and bases from water solutions[J]. Desalination,2004,169(1):11-20.
    [66] NEGRO C,BLANCO M A,LOPEZ-Mateos F,et al. Free acids and chemicals recovery from stainless steel pickling baths[J]. Separation Science and Technology,2001,36(7):1543-1556.
    [67] WEI Y,WANG Y,ZHANG X,et al. Comparative study on regenerating sodium hydroxide from the spent caustic by bipolar membrane electrodialysis(BMED)and electro-electrodialysis(EED)[J]. Separation and Purification Technology,2013,118:1-5.
    [68] WEI Y,LI C,WANG Y,et al. Regenerating sodium hydroxide from the spent caustic by bipolar membrane electrodialysis(BMED)[J]. Separation and Purification Technology,2012,86:49-54.
    [69] SONG K,CHAE S,BANG J. Separation of sodium hydroxide from post-carbonation brines by bipolar membrane electrodialysis(BMED)[J]. Chemical Engineering Journal,2021,423:130179.
    [70] KONG L,YAN G,HU K,et al. Electro-driven direct lithium extraction from geothermal brines to generate battery-grade lithium hydroxide[J]. Nature Communications,2025,16(806).
    [71] BOYAVAL P,SETA J,GAVACH C. Concentrated propionic-acid production by electrodialysis[J]. Enzyme and Microbial Technology,1993,15(8):683-686.
    [72] FERRER J,LABORIE S,DURAND G,et al. Formic acid regeneration by electromembrane processes[J]. Journal of Membrane Science,2006,280(1/2):509-516.
    [73] ZHANG X,LI C,WANG Y,et al. Recovery of acetic acid from simulated acetaldehyde wastewaters:Bipolar membrane electrodialysis processes and membrane selection[J]. Journal of Membrane Science,2011,379(1/2):184-190.
    [74] BAILLY M. Production of organic acids by bipolar electrodialysis:Realizations and perspectives[J]. Desalination,2002,144(1/2/3):157-162.
    [75] WANG M,KHAN M A,MOHSIN I,et al. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber-Bosch processes?[J]. Energy& Environmental Science,2021,14(5):2535-2548.
    [76] CHEN J G,CROOKS R M,SEEFELDT L C,et al. Beyond fossil fuel-driven nitrogen transformations[J]. Science,2018,360(6391).
    [77] XIE M,SHON H K,GRAY S R,et al. Membrane-based processes for wastewater nutrient recovery:Technology,challenges,and future direction[J]. Water Research,2016,89:210-221.
    [78] DONG H,LAGUNA C M,LIU M J,et al. Electrified ion exchange enabled by water dissociation in bipolar membranes for nitrogen recovery from source-separated urine[J]. Environmental Science& Technology,2022,56(22):16134-16143.
    [79] LI Y,WANG R,SHI S,et al. Bipolar membrane electrodialysis for ammonia recovery from synthetic urine:Experiments,modeling,and performance analysis[J]. Environmental Science& Technology 2021,55(21):14886-14896.
    [80] SHARIFIAN R,BOER L,WAGTERVELD R M,et al. Oceanic carbon capture through electrochemically induced in situ carbonate mineralization using bipolar membrane[J]. Chemical Engineering Journal,2022,438,135326.
    [81] Keith D W,Holmes G,St. Angelo D,et al. A process for capturing CO2 from the atmosphere[J]. Joule,2018,2(8):1573-1594.
    [82] LUO F,YANG X Q,DUAN F L,et al. Recent advances in the bipolar membrane and its applications[J]. Chemical Industry and Engineering Progress,2024,43(1):145-163. 罗芬,杨晓琪,段方麟,等. 双极膜研究进展及应用展望[J]. 化工进展,2024,43(1):145-163.
    [83] GIESBRECHT P K,FREUND M S. Recent advances in bipolar membrane design and applications[J]. Chemistry of Materials,2020,32(19):8060-8090.
    [84] UNLU M,ZHOU J,KOHL P A. Hybrid anion and proton exchange membrane fuel cells[J]. Journal of Physical Chemistry C,2009,113(26):345-349.
    [85] METLAY A S,CHYI B,YOON Y,et al. Three-chamber design for aqueous acid-base redox flow batteries[J]. ACS Energy Letters,2022,7(3):908-913.
    [86] YAO X Y,QIAN H D,ZHAO H B. Research progress of bipolar membranes and their application in hydrogen energy[J]. Chemical Industry and Engineering,2024,41(5):19-34.. 姚欣昀,钱汇东,赵宏滨. 双极膜研究进展及氢能方向应用展望[J]. 化学工业与工程,2024,41(5):19-34.
    [87] XI D,ALFARAIDI A M,GAO J,et al. Mild pH-decoupling aqueous flow battery with practical pH recovery[J]. Nature Energy,2024,9:479-490.
  • 加载中
计量
  • 文章访问数:  273
  • HTML全文浏览量:  29
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-10
  • 录用日期:  2025-02-08
  • 修回日期:  2025-01-30
  • 网络出版日期:  2025-06-07
  • 刊出日期:  2025-03-01

目录

    /

    返回文章
    返回