中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物光/电催化复合系统用于高效CO2还原的研究进展

李倩男 陈银广 张清然

李倩男, 陈银广, 张清然. 生物光/电催化复合系统用于高效CO2还原的研究进展[J]. 环境工程, 2025, 43(3): 77-89. doi: 10.13205/j.hjgc.202503007
引用本文: 李倩男, 陈银广, 张清然. 生物光/电催化复合系统用于高效CO2还原的研究进展[J]. 环境工程, 2025, 43(3): 77-89. doi: 10.13205/j.hjgc.202503007
LI Qiannan, CHEN Yinguang, ZHANG Qingran. Research progress on bio-photo/electrocatalytic hybrid systems for efficient CO2 reduction[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(3): 77-89. doi: 10.13205/j.hjgc.202503007
Citation: LI Qiannan, CHEN Yinguang, ZHANG Qingran. Research progress on bio-photo/electrocatalytic hybrid systems for efficient CO2 reduction[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(3): 77-89. doi: 10.13205/j.hjgc.202503007

生物光/电催化复合系统用于高效CO2还原的研究进展

doi: 10.13205/j.hjgc.202503007
详细信息
    作者简介:

    李倩男(1999-),女,博士研究生,主要研究方向为CO2的生物光/电催化还原。LiQiannan_hj@tongji.edu.cn

    通讯作者:

    张清然(1991-),男,研究员/副教授,主要研究方向为电化学能量转换系统。qingran_zhang@tongji.edu.cn

Research progress on bio-photo/electrocatalytic hybrid systems for efficient CO2 reduction

  • 摘要: 生物光/电催化复合系统综合了生物催化选择性高和光/电催化产率高等优点,能够高效地还原CO2,并选择性合成绿色高值化学品。对生物光/电催化复合系统研究现状的总结分析,有助于其高效还原CO2的内在机理,了解研究现状,并针对性地提出未来研究发展方向。首先根据生物光/电催化还原CO2系统的发展进程对其概念进行介绍,再对生物催化与光/电催化间的电子转移机制进行详细介绍,分别包括直接电子转移和间接电子转移,以明晰CO2固定合成绿色高值化学品的内在机理。并根据内部电子转移机制对生物光/电催化复合系统进行介绍,生物光/电催化直接耦合系统结构简单、操作方便,但在实际应用中仍受到空间传质、界面电荷传递等问题的限制;生物光/电催化非直接耦合系统能够合成复杂高值产物、具有CO2扩散效率高等特点。根据上述特性对生物光/电催化复合系统的研究现状进行了总结,为更多复杂的绿色高值化学品的合成提供了条件。最后,针对目前生物光/电催化还原CO2体系中存在的限制因素及对未来研究方向的发展进行了展望。
  • [1] MAC D N,FENNELL P S,SHAH N,et al. The role of CO2 capture and utilization in mitigating climate change[J]. Nature Climate Change,2017,7(4):243-249.
    [2] MELTON L. From air to your plate:Tech startups making food from atmospheric CO2[J]. Nature Biotechnology,2023,41(10):1359-1361.
    [3] KONDRATENKO E V,MUL G,BALTRUSAITIS J,et al. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic,photocatalytic and electrocatalytic processes[J]. Energy& Environmental Science,2013,6(11):3112-3135.
    [4] HEPBURN C,ADLEN E,BEDDINGTON J,et al. The technological and economic prospects for CO2 utilization and removal[J]. Nature,2019,575(7781):87-97.
    [5] CHEN L,TREMBLAY P L,MOHANTY S,et al. Electrosynthesis of acetate from CO2 by a highly structured biofilm assembled with reduced graphene oxide–tetraethylene pentamine[J]. Journal of Materials Chemistry A,2016,4(21):8395-8401.
    [6] SCHMID J S D A,HAUER B,KIENER A,et al. Industrial biocatalysis today and tomorrow[J]. Nature,2001,409:258-268.
    [7] SHELDON R A,WOODLEY J M. Role of biocatalysis in sustainable chemistry[J]. Chemical Reviews,2017,118(2):801-838.
    [8] de CARVALHO C C C R. Enzymatic and whole cell catalysis:Finding new strategies for old processes[J]. Biotechnology Advances,2011,29(1):75-83.
    [9] BASSEGODA A,MADDEN C,WAKERLEY D W,et al. Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase[J]. Journal of the American Chemical Society,2014,136(44):15473-15476.
    [10] WANG Q,KALATHIL S,PORNRUNGROJ C,et al. Bacteria–photocatalyst sheet for sustainable carbon dioxide utilization[J]. Nature Catalysis,2022,5(7):633-641.
    [11] WU Y,CAO S,HOU J,et al. Rational design of nanocatalysts with nonmetal species modification for electrochemical CO2 reduction[J]. Advanced Energy Materials,2020,10(29):2000588.
    [12] ZHANG Q,MUSGRAVE C B,SONG Y,et al. A covalent molecular design enabling efficient CO2 reduction in strong acids[J]. Nature Synthesis,2024,3(10):1231-1242.
    [13] WEI J,LIANG P,HUANG X. Recent progress in electrodes for microbial fuel cells[J]. Bioresource Technology,2011,102(20):9335-9344.
    [14] de LUNA P,HAHN C,HIGGINS D,et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes?[J]. Science,2019,364(6438).
    [15] LUAN L,JI X,GUO B,et al. Bioelectrocatalysis for CO2 reduction:Recent advances and challenges to develop a sustainable system for CO2 utilization[J]. Biotechnology Advances,2023,63.
    [16] LIU Y,CRUZ-MORALES P,ZARGAR A,et al. Biofuels for a sustainable future[J]. Cell,2021,184(6):1636-1647.
    [17] BIAN J,AN X,ZHAO J,et al. Directional electron transfer in enzymatic nano‐bio hybrids for selective photobiocatalytic conversion of nitrate[J]. Angewandte Chemie International Edition,2024.
    [18] GREEN D E,STICKLAND L H. Studies on reversible dehydrogenase systems:The reversibility of the hydrogenase system of Bact. coli.1[J]. Biochemical Journal,1934,28(3):898-900.
    [19] ALVAREZ-MALMAGRO J,OLIVEIRA A R,GUTIéRREZ-SáNCHEZ C,et al. Bioelectrocatalytic activity of W-formate dehydrogenase covalently immobilized on functionalized gold and graphite electrodes[J]. ACS Applied Materials& Interfaces,2021,13(10):11891-11900.
    [20] SZCZESNY J,RUFF A,OLIVEIRA A R,et al. Electroenzymatic CO2 fixation using redox polymer/enzyme-modified gas diffusion electrodes[J]. ACS Energy Letters,2020,5(1):321-327.
    [21] CHEN H,DONG F,MINTEER S D. The progress and outlook of bioelectrocatalysis for the production of chemicals,fuels and materials[J]. Nature Catalysis,2020,3(3):225-244.
    [22] TORELLA J P,GAGLIARDI C J,CHEN J S,et al. Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system[J]. Proceedings of the National Academy of Sciences,2015,112(8):2337-2342.
    [23] SCHWANDER T,SCHADA V B L,BURGENER S,et al. A synthetic pathway for the fixation of carbon dioxide in vitro[J]. Science,2016,354(6314):900-904.
    [24] CHEN X,CAO Y,LI F,et al. Enzyme-assisted microbial electrosynthesis of poly(3-hydroxybutyrate)via CO2 bioreduction by engineered Ralstonia eutropha[J]. ACS Catalysis,2018,8(5):4429-4437.
    [25] GLEIZER S,BEN-NISSAN R,BAR-ON Y M,et al. Conversion of Escherichia coli to generate all biomass carbon from CO2[J]. Cell,2019,179(6):1255-1263.e12.
    [26] CAI T,SUN H,QIAO J,et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science,2021,373(6562):1523-1527.
    [27] ZHENG T,ZHANG M,WU L,et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering[J]. Nature Catalysis,2022,5(5):388-396.
    [28] CESTELLOS-BLANCO S,ZHANG H,KIM J M,et al. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis[J]. Nature Catalysis,2020,3(3):245-255.
    [29] LEE Y S,BAEK S,LEE H,et al. Construction of uniform monolayer-and orientation-tunable enzyme electrode by a synthetic glucose dehydrogenase without electron-transfer subunit via optimized site-specific gold-binding peptide capable of direct electron transfer[J]. ACS Applied Materials& Interfaces,2018,10(34):28615-28626.
    [30] MURATA K,KAJIYA K,NAKAMURA N,et al. Direct electrochemistry of bilirubin oxidase on three-dimensional gold nanoparticle electrodes and its application in a biofuel cell[J]. Energy& Environmental Science,2009,2(12):1280-1285.
    [31] REGUERA G,MCCARTHY K D,MEHTA T,et al. Extracellular electron transfer via microbial nanowires[J]. Nature,2005,435(7045):1098-1101.
    [32] SUMMERS Z M,FOGARTY H E,LEANG C,et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria[J]. Science,2010,330(6009):1413-1415.
    [33] ROTARU A E,SHRESTHA P M,LIU F,et al. A new model for electron flow during anaerobic digestion:Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy& Environmental Science,2014,7(1):408-415.
    [34] SHI L,DONG H,REGUERA G,et al. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nature Reviews Microbiology,2016,14(10):651-662.
    [35] LI S L,FREGUIA S,LIU S M,et al. Effects of oxygen on Shewanella decolorationis NTOU1 electron transfer to carbon-felt electrodes[J]. Biosensors and Bioelectronics,2010,25(12):2651-2656.
    [36] GUAN X,ERŞAN S,HU X,et al. Maximizing light-driven CO2 and N2 fixation efficiency in quantum dot–bacteria hybrids[J]. Nature Catalysis,2022,5(11):1019-1029.
    [37] YE J,WANG C,GAO C,et al. Solar-driven methanogenesis with ultrahigh selectivity by turning down H2 production at biotic-abiotic interface[J]. Nature Communications,2022,13(1):6612.
    [38] ZHANG R,HE Y,YI J,et al. Proteomic and metabolic elucidation of solar-powered biomanufacturing by bio-abiotic hybrid system[J]. Chem,2020,6(1):234-249.
    [39] ZHANG H,LIU H,TIAN Z,et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production[J]. Nature Nanotechnology,2018,13(10):900-905.
    [40] SAKAI H,NAKAGAWA T,TOKITA Y,et al. A high-power glucose/oxygen biofuel cell operating under quiescent conditions[J]. Energy& Environmental Science,2009,2(1):133-138.
    [41] XIE Y,ERŞAN S,GUAN X,et al. Unexpected metabolic rewiring of CO2 fixation in H2-mediated materials–biology hybrids[J]. Proceedings of the National Academy of Sciences,2023,120(42):e2308373120.
    [42] OKAMOTO A,SAITO K,INOUE K,et al. Uptake of self-secreted flavins as bound cofactors for extracellular electron transfer in Geobacter species[J]. Energy& Environmental Science,2014,7(4):1357-1361.
    [43] SHERBO R S,SILVER P A,NOCERA D G. Riboflavin synthesis from gaseous nitrogen and carbon dioxide by a hybrid inorganic-biological system[J]. Proceedings of the National Academy of Sciences,2022,119(37):e2210538119.
    [44] KORNIENKO N,SAKIMOTO K K,HERLIHY D M,et al. Spectroscopic elucidation of energy transfer in hybrid inorganic–biological organisms for solar-to-chemical production[J]. Proceedings of the National Academy of Sciences,2016,113(42):11750-11755.
    [45] HAN H-X,TIAN L-J,LIU D-F,et al. Reversing electron transfer chain for light-driven hydrogen production in biotic–abiotic hybrid systems[J]. Journal of the American Chemical Society,2022,144(14):6434-6441.
    [46] SABOE P O,CONTE E,FARELL M,et al. Biomimetic and bioinspired approaches for wiring enzymes to electrode interfaces[J]. Energy& Environmental Science,2017,10(1):14-42.
    [47] CONTALDO U,GUIGLIARELLI B,PERARD J,et al. Efficient electrochemical CO2/CO interconversion by an engineered carbon monoxide dehydrogenase on a gas-diffusion carbon nanotube-based bioelectrode[J]. ACS Catalysis,2021,11(9):5808-5817.
    [48] CHEN Y,LI P,NOH H,et al. Stabilization of formate dehydrogenase in a metal–organic framework for bioelectrocatalytic reduction of CO2[J]. Angewandte Chemie International Edition,2019,58(23):7682-7686.
    [49] ZHANG P,CHEN K,XU B,et al. Chem-bio interface design for rapid conversion of CO2 to bioplastics in an integrated system[J]. Chem,2022,8(12):3363-3381.
    [50] LIU C,GALLAGHER J J,SAKIMOTO K K,et al. Nanowire–bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals[J]. Nano Letters,2015,15(5):3634-3639.
    [51] YADAV R,CHATTOPADHYAY B,KIRAN R,et al. Microbial electrosynthesis from carbon dioxide feedstock linked to yeast growth for the production of high-value isoprenoids[J]. Bioresource Technology,2022,363:127906.
    [52] NEUPANE S,PATNODE K,LI H,et al. Enhancing enzyme immobilization on carbon nanotubes via metal–organic frameworks for large-substrate biocatalysis[J]. ACS Applied Materials& Interfaces,2019,11(12):12133-12141.
    [53] LIM J,CHOI S Y,LEE J W,et al. Biohybrid CO2 electrolysis for the direct synthesis of polyesters from CO2[J]. Proceedings of the National Academy of Sciences of the United States of America,2023,120(14):e2221438120.
    [54] LIU C,COLóN B C,ZIESACK M,et al. Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis[J]. Science,2016,352(6290):1210-1213.
    [55] CHEN H,LI J,FAN Q,et al. A feasible strategy for microbial electrocatalytic CO2 reduction via whole-cell-packed and exogenous-mediator-free rGO/Shewanella biohydrogel[J]. Chemical Engineering Journal,2023,460.
    [56] LI H,OPGENORTH P H,WERNICK D G,et al. Integrated Electromicrobial Conversion of CO2 to Higher Alcohols[J]. Science,2012,335(6076):1596-1596.
    [57] SHENG H,LIU C. Spatial decoupling boosts CO2 electro-biofixation[J]. Nature Catalysis,2022,5(5):357-358.
    [58] LIU C,SAKIMOTO K K,COLóN B C,et al. Ambient nitrogen reduction cycle using a hybrid inorganic–biological system[J]. Proceedings of the National Academy of Sciences,2017,114(25):6450-6455.
    [59] RODRIGUES R M,GUAN X,IñIGUEZ J A,et al. Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction[J]. Nature Catalysis,2019,2(5):407-414.
    [60] MOLITOR B,MISHRA A,ANGENENT L T. Power-to-protein:Converting renewable electric power and carbon dioxide into single cell protein with a two-stage bioprocess[J]. Energy& Environmental Science,2019,12(12):3515-3521.
    [61] HAAS T,KRAUSE R,WEBER R,et al. Technical photosynthesis involving CO2 electrolysis and fermentation[J]. Nature Catalysis,2018,1(1):32-39.
    [62] GUO J,SUÁSTEGUI M,SAKIMOTO K K,et al. Light-driven fine chemical production in yeast biohybrids[J]. Science,2018,362(6416):813-816.
  • 加载中
计量
  • 文章访问数:  121
  • HTML全文浏览量:  35
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-17
  • 录用日期:  2025-01-16
  • 修回日期:  2025-01-05
  • 网络出版日期:  2025-06-07
  • 刊出日期:  2025-03-01

目录

    /

    返回文章
    返回