| [1] |
National Bureau of Statistics. China statistical yearbook 2023[M]. Beijing:China Statistics Press,2023. 国家统计局. 中国统计年鉴2023[M]. 北京:中国统计出版社,2023.
|
| [2] |
Communist Party of China Central Committee. Recommendations on formulating the 14th five-year plan for national economic and social development and the long-range objectives through the year 2035[EB/OL].(2020-10-29)[ 2020-11-03]. https://www.gov.cn/zhengce/2020-11/03/content_5556991.htm. 中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议[EB/OL].(2020-10-29)[ 2020-11-03]. https://www.gov.cn/zhengce/2020-11/03/content_5556991.htm.
|
| [3] |
TANG K. Research on garbage image classification method based on convolutional neural network[J]. International Journal of Computer Applications Technology Research,2020,9(1):37.
|
| [4] |
GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Columbus,OH,USA,2014:580-587.
|
| [5] |
REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:Unified,real-time object detection[C]// Proceedings of the IEEE conference on computer vision and pattern recognition,2016:779-788.
|
| [6] |
JIN W,YU H. Cvt-assd:Convolutional vision-transformer based attentive single shot multibox detector[C]// Proceedings of the IEEE International Conference on Tools with Artificial Intelligence,2021:12364.
|
| [7] |
YAN B,FAN P,LEI X,et al. A real-time apple targets detection method for picking robot based on improved YOLOv5[C]// Proceedings of the Computer Vision and Pattern Recognition,2021,39(20):152-160.
|
| [8] |
LI Y,HU J G,LE Y. A Waste Classification Method Based on YOLOv5 with GhostNet Integration[J]. Application of Electronic Technology,2024,50(1):14-20. 李耀,胡军国,乐杨. 融合GhostNet的YOLOv5垃圾分类方法[J]. 电子技术应用,2024,50(1):14-20.
|
| [9] |
DU J. A waste classification method based on YOLOv8 and transfer learning[J]. Intelligent Computing and Applications,2024,14(09):63-69. 杜俊. 基于YOLOv8和迁移学习的垃圾分类方法[J]. 智能计算机与应用,2024,14(9):63-69.
|
| [10] |
KUANG E Z,BHANDARI K R,GAO J. Optimizing waste management with advanced object detection for garbage classification[J]. 2024,1069:120-132.
|
| [11] |
SAWANT S,D'SOUZA L,KULKARNI A,et al. Performance evaluation of YOLO variants on marine trash images:a comparative study of YOLOv5,YOLOv7,YOLOv 8,and tiny YOLO[C]// 2024 IEEE Bangalore Humanitarian Technology Conference,2024:10564025.
|
| [12] |
HARADA R,OYAMA T,FUJIMOTO,KENJI SHIMIZU,et al. Trash detection algorithm suitable for mobile robots using improved YOLO[J]. Journal of Advanced Computatioanl Intelligence and Intelligent Informatics,2023,27(4 TN. 163):622-631.
|
| [13] |
WANG W S,NIAN C X,ZHANG C,et al. Design of automatic waste sorting bin for non-residential areas based on YOLO v5 Model[J]. Environmental Engineering,2022,40(3):159-165. 王文胜,年诚旭,张超,等. 基于YOLO v5模型的非住宅区自动垃圾分类箱设计[J]. 环境工程,2022,40(3):159-165.
|
| [14] |
LE N,NGUYEN K,NGUYEN A,et al. Global-local attention for emotion recognition[J]. Neural Computing and Applications,2021,34:21625-21639.
|
| [15] |
WAN D,LU R,SHEN S,et al. Mixed local channel attention for object detection[J]. Engineering Applications of Artificial Intelligence,2023,123:106442.
|
| [16] |
ZHANG Y F,REN W,ZHANG Z,et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing,2022,506:146-157.
|
| [17] |
HOU Q,ZHOU D,FENG J. Coordinate attention for efficient mobile network design[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:13708-13717.
|
| [18] |
HU J,SHEN L,SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Salt Lake City,USA,2018:7132-7141.
|
| [19] |
WOO S,PARK J,LEE J Y,et al. Cbam:convolutional block attention module[C]// Proceedings of the Europea Conference on Computer Vision,Munich,Germany,2018:3-19.
|
| [20] |
PROENA F,SIMES P. TACO:trash annotations in context for litter detection[DB]. arXiv,2020:06975.
|
| [21] |
OUYANG D,HE S,ZHANG G,et al. Efficient multi-scale attention module with cross-spatial learning[C]// Proceedings of the 2023 IEEE International Conference on Acoustics,Speech and Signal Processing,Rhodes,Greece,2023:1-5.
|
| [22] |
ZHIGANG L,BAOSHAN S,KAIYU B. Optimization of YOLOv7 based on PConv,SE attention and Wise-IoU[J]. International Journal of Computational Intelligence and Applications,2024,23(01):2350033:1-2350033:22.
|
| [23] |
GEVORGYAN Z. SIoU loss:more powerful learning for bounding box regression[J]. Computer Engineering and Applications,2023,59(10):187-195.
|