中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于树集成模型的污水处理工艺亚硝酸盐氮软测量研究

马亚朋 李壮壮 徐敬生 吕路

马亚朋,李壮壮,徐敬生,等.基于树集成模型的污水处理工艺亚硝酸盐氮软测量研究[J].环境工程,2025,43(4):121-131. doi: 10.13205/j.hjgc.202504012
引用本文: 马亚朋,李壮壮,徐敬生,等.基于树集成模型的污水处理工艺亚硝酸盐氮软测量研究[J].环境工程,2025,43(4):121-131. doi: 10.13205/j.hjgc.202504012
MA Y P,LI Z Z,XU J S,et al.Research on soft sensing of nitrite nitrogen in wastewater treatment process based on tree integration models[J].Environmental Engineering,2025,43(4):121-131. doi: 10.13205/j.hjgc.202504012
Citation: MA Y P,LI Z Z,XU J S,et al.Research on soft sensing of nitrite nitrogen in wastewater treatment process based on tree integration models[J].Environmental Engineering,2025,43(4):121-131. doi: 10.13205/j.hjgc.202504012

基于树集成模型的污水处理工艺亚硝酸盐氮软测量研究

doi: 10.13205/j.hjgc.202504012
基金项目: 

国家自然科学基金重点项目“面向深度水处理的限域纳米铁氧化物复合材料构建、特性与应用”(22236003)

详细信息
    作者简介:

    马亚朋(1999—),男,硕士研究生,主要研究方向为污水处理工艺智慧化管控。mg21250056@smail.nju.edu.cn

    通讯作者:

    吕路(1975—),男,教授,主要研究方向为大数据与工业污染减排过程控制。esellu@nju.edu.cn

Research on soft sensing of nitrite nitrogen in wastewater treatment process based on tree integration models

  • 摘要: 机器学习在污水处理工艺水质监测的应用成为当前研究热点。为解决关键水质指标的获取存在时间滞后性和成本高的问题,以短程硝化反硝化工艺亚硝酸盐氮(NO2--N)浓度预测为目标,提出了一种基于树集成模型的水质软测量方法。采用反硝化池易监测的参数,应用决策树的四类集成模型预测出水NO2--N浓度,通过分析输入特征对预测结果的重要性程度来解释最优模型,并用特征选择验证模型解释结果。结果表明,4种决策树集成模型中,自适应提升(AdaBoost)对于出水NO2--N浓度的预测准确率和稳定性最高,决定系数(R2)、均方误差(MSE)和平均绝对百分比误差(MAPE)分别为0.983、0.015和0.126;模型解释表明,pH、ORP及进水COD是影响预测效果的高重要性参数,与NO2--N呈现出较强相关性。该研究对于实现低成本、实时地预测水质指标,扩充有效数据量提高预测精度具有重要参考价值。
  • 1  污水处理工艺流程

    1.  Sewage treatment process flow

    2  小试工艺流程和数据监测点位

    2.  Flow path and data monitoring points of the small-scale test process

    3  污水处理工艺各参数随时间的变化

    3.  The parameters in the wastewater treatment process varied with time

    4  基于树集成模型的出水NO2--N浓度软测量算法流程

    4.  Algorithm flow of effluent NO2--N concentration soft sensing based on tree integration models

    5  输入输出参数间的Pearson相关系数结果

    5.  Pearson correlation coefficient between input and output parameters

    6  7个输入特征与出水NO2--N的线性拟合结果

    6.  Linear fitting results of seven input features and effluent NO2--N concentrations

    7  基础算法构建出水NO2--N预测模型的结果

    7.  The results of the effluent NO2--N prediction models established by basic algorithms

    8  树集成算法构建出水NO2--N预测模型的结果

    8.  The results of the effluent NO2--N prediction models established by tree integration algorithms

    9  树集成模型在测试集上预测值和实际值的对比

    9.  Comparisons of predicted and true values of tree integration models in the test set

    10  树集成模型在测试集上的预测准确率分布

    10.  Prediction accuracy distribution of tree integration models in the test set

    11  AdaBoost和XGBoost的置换特征重要性参数

    11.  Permutation importance factors of AdaBoost and XGBoost

    12  AdaBoost和XGBoost的平均绝对SHAP值

    12.  Mean absolute SHAP values of AdaBoost and XGBoost

    13  从低到高重要性依次剔除输入参数对模型预测效果的影响

    13.  Impact of removing input variables by ascending order of importance on model prediction result

    14  从高到低重要性依次剔除输入参数对模型预测效果的影响

    14.  Impact of removing input variables by decreasing order of importance on model prediction result

    1  不同模型的最佳超参数值

    1.   The optimal hyperparameters values of different models

    模型超参数最适模型超参数
    RFn_estimators200
    max_depth10
    max_features3
    max_samples0.9
    min_samples_split2
    Adaboostn_estimators100
    learning_rate2.1
    subsample1.0
    lossexponential
    min_samples_split2
    GBRTn_estimators200
    learning_rate0.2
    subsample1.0
    max_features3
    XGBoostn_estimators500
    learning_rate0.05
    subsample0.8
    min_child_weight3
    max_depth7
    下载: 导出CSV

    2  基础及树集成模型的预测性能指标

    2.   Predictive performance indicators of basic and tree integration models

    模型训练集R2测试集R2训练集MSE测试集MSE训练集MAPE测试集MAPE
    线性回归0.7150.6750.2860.3240.5230.545
    决策树0.9490.9360.0300.0530.2090.260
    随机森林0.9810.9750.0210.0240.1150.149
    自适应提升0.9880.9830.0120.0150.0970.126
    梯度提升回归树0.9770.9740.0230.0250.1590.178
    极端梯度提升0.9860.9800.0120.0190.1030.155
    下载: 导出CSV
  • [1] LEWIS W,WURTSBAUGH W,PAERL H,et al. Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters[J]. Environmental Science& Technology,2011,45(24):10300-10305.
    [2] MORRIS L,COLOMBO V,HASSELL K,et al. Municipal wastewater effluent licensing:a global perspective and recommendations for best practice[J]. Science of the Total Environment,2017,580:1327-1339.
    [3] XUE T L,ZHAO D H,HAN F. Svr water quality prediction model based on GA optimization[J]. Environment Engineering,2020,38(3):123-127. 薛同来,赵冬晖,韩菲. 基于GA优化的SVR水质预测模型研究[J]. 环境工程,2020,38(3):123-127.
    [4] ZHONG S,ZHANG K,BAGHERI M,et al. Machine learning:new ideas and tools in environmental science and engineering[J]. Environmental Science& Technology,2021,55(19):12741-12754.
    [5] LI K,DUAN H,LIU L,et al. An integrated first principal and deep learning approach for modeling nitrous oxide emissions from wastewater treatment plants[J]. Environmental Science& Technology,2022,56(4):2816-2826.
    [6] WANG G,JIA Q,ZHOU M,et al. Artificial neural networks for water quality soft-sensing in wastewater treatment:a review[J]. Artificial Intelligence Review. 2022; 55(1):565-587.
    [7] LI Y Y,LIU H L. Prediction of total phosphorus in rivers based on attention mechanism of temporal convolutional networks[J]. Environment Engineering,2023,41(5):163-171. 黎园园,刘海隆. 基于注意力机制的时间卷积网络河流总磷预测[J]. 环境工程,2023,41(5):163-171.
    [8] DU R,PENG YZ. Technical revolution of biological nitrogen removal from municipal wastewater:recent advances in anammox research and application[J]. Scientia Sinica Technologica,2022,52(3):389-402. 杜睿,彭永臻. 城市污水生物脱氮技术变革:厌氧氨氧化的研究与实践新进展[J]. 中国科学:技术科学,2022,52(3):389-402.
    [9] ZHANG L,JIANG L,ZHANG J,et al. Enhancing nitrogen removal through directly integrating anammox into mainstream wastewater treatment:Advantageous,issues and future study[J]. Bioresour Technol,2022,362:127827.
    [10] LI J,WU L N,YAN Z B,et al. Research on control strategy of nitrogen removal functional bacteria in mainstream partial nitrification-anammox process[J]. Environment Engineering,2021,39(8):45-54,61. 李进,吴莉娜,闫志斌,等. 主流部分亚硝化-厌氧氨氧化工艺脱氮功能菌群的控制策略研究[J]. 环境工程,2021,39(8),45-54,61.
    [11] WU P,CHEN J,GARLAPATI V,et al. Novel insights into Anammox-based processes:A critical review[J]. Chemical Engineering Journal,2022,13(2):444.
    [12] AGRAWAL S,SEUNTJENS D,COCKER P,et al. Success of mainstream partial nitritation/anammox demands integration of engineering,microbiome and modeling insights[J]. Current Opinion in Biotechnology,2018,50:214-221.
    [13] GUO L J,LI B L. Research on soft measurement of effluent total nitrogen based on GNFA-SVR[J]. Industrial Water Treatment,2022,42(10):111-117. 郭利进,李博仑. 基于GNFA-SVR污水出水总氮软测量研究[J]. 工业水处理,2022,42(10):111-117.
    [14] ZHANG M,YANG Y,GUO W,et al. Electrochemical sensor for sensitive nitrite and sulfite detection in milk based on acid-treated Fe3O4@SiO2 nanoparticles[J]. Food Chemistry,2024,35(6):430.
    [15] LI X M,LUO X K,LI W,et al. Design of a nitrite sensor based on colorimetry[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition),2020,47(6):79-84. 李新民,罗学科,李文,等. 基于颜色检测的亚硝酸盐传感器设计[J]. 北京化工大学学报(自然科学版),2020,47(6):79-84.
    [16] WANG C Z,WANG X C,NIU Q,et al. Assessment on measurement uncertainty of nitrite nitrogen in water by n-(1-naphthyl)-ethylenediamine spectrometry[J]. Environment Engineering,2013,31(5):147-150. 王存政,王兴春,牛倩,等. N-(1-萘基)-乙二胺光度法测定水中亚硝酸盐氮的测量不确定度评定[J]. 环境工程,2013,31(5):147-150.
    [17] MENG X,ZHANG Y,QIAO J,et al. An adaptive task-oriented RBF network for key water quality parameters prediction in wastewater treatment process[J]. Neural Computing& Applications,2021,33(17):11401-11414.
    [18] FOSCHI J,TUROLLA A,ANTONELLI M,et al. Soft sensor predictor of E. coli concentration based on conventional monitoring parameters for wastewater disinfection control[J]. Water Research,2021,14(9):191.
    [19] ZHU J,JIANG Z,FENG L,et al. Improved neural network with least square support vector machine for wastewater treatment process[J]. Chemosphere,2022,15(1):308.
    [20] GORGAN F,RAJAEE T,ZOUNEMAT M,et al. Investigating machine learning models in predicting lake water quality parameters as a 3-year moving average[J]. Environmental Science and Pollution Research,2023,30(23):63839-63863.
    [21] QUINLAN J. Improved use of continuous attributes in C4.5[J]. Journal of Artificial Intelligence Research,1996,4:77-90.
    [22] RUDIN C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence[J]. 2019,1(5):206-215.
    [23] WANG D,THUNELL S,LINDBERG U,et al. A machine learning framework to improve effluent quality control in wastewater treatment plants[J]. Science of the Total Environment,2021,3(9):784.
    [24] HE X,JI J,LIU K,et al. Soft sensing of silicon content via bagging local semi-supervised models[J]. Sensors,2019,19(17):36-45.
    [25] WANG R,YU Y,CHEN Y,et al. Model construction and application for effluent prediction in wastewater treatment plant:Data processing method optimization and process parameters integration[J]. Journal of Environmental Management,2022,9(14):302-308.
    [26] LI X,YI X,LIU Z,et al. Application of novel hybrid deep leaning model for cleaner production in a paper industrial wastewater treatment system[J]. Journal of Cleaner Production,2021,14(6):294-301.
    [27] LIU X,SHANG J,SHI H,et al. Research on Real-Time Data Processing Method of GNSS-RTK Deformation Monitoring[J]. Chinese Journal of Sensors and Actuators,2020,33(8):1190-1196.
    [28] DOU J,YUNUS A,BUI D,et al. Improved landslide assessment using support vector machine with bagging,boosting,and stacking ensemble machine learning framework in a mountainous watershed,Japan[J]. Landslides,2020,17(3):641-658.
    [29] BREIMAN L. Pasting small votes for classification in large databases and on-line[J]. Machine Learning,1999,36(1/2):85-103.
    [30] CHENG W,YUAN D,XIONG P,et al. Construction and evaluation of city water quality index prediction model based on multiple machine learning algorithms[J]. Acta Scientiae Circumstantiae,2023,43(11):144-152.
    [31] BIAN L,QIN X,ZHANG C,et al. Application,interpretability and prediction of machine learning method combined with LSTM and LightGBM-a case study for runoff simulation in an arid area[J]. Journal of Hydrology,2023,4(13):625.
    [32] PARK J,LEE W,KIM K,et al. Interpretation of ensemble learning to predict water quality using explainable artificial intelligence[J]. Science of the Total Environment,2022,19(7):832-839.
    [33] LI Y,WANG Y,DONG F,et al. Controlling carbon dioxide-to-hydrogen ratio to improve hydrogen utilization and denitrification rates of hydrogenotrophic autotrophic denitrification through homoacetogenesis-heterotrophic denitrification pathway[J]. Bioresource Technology,2024,16(7):393-400.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  31
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-08
  • 录用日期:  2024-03-28
  • 修回日期:  2024-01-18
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回