中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZIF-8/CMC杂化泡沫吸附TC和Cu2+研究

李微 郭孟雅 刘宁 刘水

李微,郭孟雅,刘宁,等.ZIF-8/CMC杂化泡沫吸附TC和Cu2+研究[J].环境工程,2025,43(4):182-193. doi: 10.13205/j.hjgc.202504018
引用本文: 李微,郭孟雅,刘宁,等.ZIF-8/CMC杂化泡沫吸附TC和Cu2+研究[J].环境工程,2025,43(4):182-193. doi: 10.13205/j.hjgc.202504018
LI W,GUO M Y,LIU N,et al.Research on adsorption of TC and copper ions by ZIF-8/CMC hybrid foam[J].Environmental Engineering,2025,43(4):182-193. doi: 10.13205/j.hjgc.202504018
Citation: LI W,GUO M Y,LIU N,et al.Research on adsorption of TC and copper ions by ZIF-8/CMC hybrid foam[J].Environmental Engineering,2025,43(4):182-193. doi: 10.13205/j.hjgc.202504018

ZIF-8/CMC杂化泡沫吸附TC和Cu2+研究

doi: 10.13205/j.hjgc.202504018
基金项目: 

辽宁省高校基本科研项目(LJ212410153029;辽宁省应用基础研究计划项目(2023030002-JH2/1013);沈阳市科技计划项目(22-322-3-10

详细信息
    作者简介:

    李微(1982-),女,博士,教授,主要研究方向为水污染控制理论与技术。lw02315@sjzu.edu.cn

    通讯作者:

    李微(1982-),女,博士,教授,主要研究方向为水污染控制理论与技术。lw02315@sjzu.edu.cn

Research on adsorption of TC and copper ions by ZIF-8/CMC hybrid foam

  • 摘要: 以提高金属有机骨架材料吸附有机物和重金属混合污染稳定性为目标,采用冰模版-冷冻干燥法,以羧甲基纤维素作为交联剂制备金属有机骨架杂化泡沫ZIF-8/CMC,利用扫描电子显微镜(SEM)、X射线衍射(XRD)、氮气吸附-脱附实验和热重分析(TG)对其结构和性能进行表征,深入研究了ZIF-8/CMC对四环素(TC)和Cu2+的吸附性能、吸附机理及循环再生稳定性。实验结果表明:CMC成功负载到ZIF-8孔道中,形成了不规则的立体结构,提高了对污染物的吸附和循环使用性能。ZIF-8/CMC最佳吸附条件为吸附时间16h、污染物初始浓度30 mg/L、pH=6、吸附剂投加量50 mg,该条件下其对TC和Cu2+的吸附容量分别为78.75 mg/g和79.71 mg/g。ZIF-8/CMC的吸附等温线符合 Langmuir 模型,吸附动力学符合拟一级动力学模型,吸附热力学研究表明,ZIF-8/CMC吸附TC和Cu2+的热力学行为是一个自发、放热、趋于有序的过程。ZIF-8/CMC循环利用5次,去除率仍保持在75%以上。ZIF-8/CMC吸附剂对TC和Cu2+具有高效的选择吸附性能及良好的循环再生性能,在处理医药废水方面具有广阔的应用前景。
  • 1  ZIF-8/CMC 制备流程示意

    1.  Schematic diagram of the preparation process of ZIF-8/CMC

    2  ZIF-8/CMC杂化泡沫的 SEM 图像

    a—ZIF-8/CMC 1k倍镜 b—ZIF-8/CMC 5k倍镜

    2.  SEM images of ZIF-8/CMC hybrid foam

    3  ZIF-8和ZIF-8/CMC杂化泡沫的X射线衍射图谱

    3.  X-ray diffraction patterns of ZIF-8 and ZIF-8/CMC hybrid foam

    4  ZIF-8/CMC 杂化泡沫的氮气吸附脱附

    4.  Nitrogen absorption and desorption diagram of ZIF-8/CMC hybrid foam

    5  ZIF-8/CMC杂化泡沫的热重分析

    5.  Thermogravimetric analysis of ZIF-8 and ZIF-8/CMC hybrid foam

    6  ZIF-8/CMC杂化泡沫在不同吸附时间下对去除效果的影响

    6.  Effects of adsorption time on removal efficiency by ZIF-8/CMC hybrid foam

    7  ZIF-8/CMC 杂化泡沫在污染物不同初始浓度下对其去除效果的影响

    7.  Effects of initial concentration on removal efficiency by ZIF-8/CMC hybrid foam

    8  ZIF-8/CMC 杂化泡沫在不同投加量下对去除效果的影响

    8.  Effects of dosage on removal efficiency by ZIF-8/CMC hybrid foam

    9  ZIF-8/CMC 杂化泡沫在不同 pH 下对污染物去除效果的影响

    9.  Effects of pH on removal efficiency by ZIF-8/CMC hybrid foam

    10  ZIF-8/CMC吸附Cu2+、TC 的等温吸附模型拟合曲线

    10.  Isothermal adsorption model fitting curves for the adsorption of Cu2+ and TC by ZIF-8/CMC

    11  ZIF-8/CMC吸附Cu2+、TC 的动力学模型拟合曲线

    11.  Kinetic curves for the adsorption of Cu2+and TC by ZIF-8/CMC

    12  不同温度下ZIF-8/CMC吸附Cu2+、TC 的热力学模拟曲线

    12.  Thermodynamic simulation curves of the adsorption of Cu2+ and TC by ZIF- 8/CMC at different temperatures

    13  ZIF-8/CMC循环再生性能

    13.  Reusability performance of ZIF-8/CMC

    1  ZIF-8/CMC吸附Cu2+、TC 的等温吸附模型参数

    1.   Isothermal adsorption model parameters for the adsorption of Cu2+ and TC by ZIF-8/CMC

    目标污染物Langmuir 模型Freundlich 模型
    KL/(L/mg)qm /(mg/g)R2KF/(L/g)1/nR2
    TC0.035770.76240.98086.02020.58780.9768
    Cu2+0.046467.23430.956314.54630.39070.9508
    下载: 导出CSV

    2  ZIF-8/CMC吸附Cu2+、TC 的动力学模型拟合参数

    2.   Kinetic adsorption model parameters for the adsorption of Cu2+ and TC by ZIF-8/CMC

    目标污染物拟一阶动力学模型拟二阶动力学模型
    qe/(mg/g)k1/(1/min)R2qe /(mg/g)k2/[g/(mg·min)R2
    TC71.64390.20190.99186.02020.58780.9768
    Cu2+77.05710.24630.991114.54630.39070.9508
    下载: 导出CSV

    3  不同温度下目标污染物热力学模型的参数

    3.   Parameters of the thermodynamic model for target pollutants at different temperatures

    目标污染物温度/KLangmuir 模型
    KL/(L/mg)qm/(mg/g)R2
    TC2980.035770.76240.9808
    3030.034470.00050.9800
    3080.032669.80880.9935
    Cu2+2980.066467.23430.9563
    3030.062365.41320.9804
    3080.051864.85200.9733
    下载: 导出CSV

    4  不同温度下吸附过程的热力学参数

    4.   Thermodynamic parameters of adsorption processes at different temperatures

    目标污染物温度/K热力学参数
    KΔG/(kJ/mol)ΔH/(kJ/mol)ΔS/[J/(mol·K)]
    TC29835700-11.2795-231.1405-0.7377
    30334400-11.4282
    30832600-11.5570
    Cu2+29866400-11.9472-375.3677-1.2195
    30362300-12.0779
    30851800-12.0720
    下载: 导出CSV
  • [1] BAGAL K D,KARVE M S,KAKADE B,et al. Invertase inhibition based electrochemical sensor for the detection of heavy metal ions in aqueous system:application of ultra-microelectrode to enhance sucrose biosensor's sensitivity[J]. Biosensors and Bioelectronics,2008,24(4):657-664.
    [2] ABDULLAH N,YUSOF N,LAU W J,et al. Recent trends of heavy metal removal from wastewater by membrane technologies[J]. Journal of Industrial and Engineering Chemistry,2019,142(3):11-16.
    [3] ARUN J,NIRMALA N,PRIYADHARSINI P,et al. A mini-review on bioderived carbon and its nanocomposites for removal of organic pollutants from wastewater[J]. Materials Letters,2021,310(6):1-3.
    [4] KOBIELSKA P A,HOWARTH A J,FARHA O K,et al. Metal-organic frameworks for heavy metal removal from water[J]. Coordination Chemistry Reviews,2018,358(9):92-107.
    [5] SRIVASTAVA N K,MAJUMDER C B. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater[J]. Journal of Hazardous Materials,2008,151(1):1-8.
    [6] XU H,YUAN H,YU J,et al. Study on the competitive adsorption and correlational mechanism for heavy metal ions using the carboxylated magnetic iron oxide nanoparticles(MNPs-COOH)as efficient adsorbents[J]. Applied Surface Science,2019,473(43):960-966.
    [7] WANG J,CUI H,CUI C,et al. Biosorption of copper(Ⅱ)from aqueous solutions by Aspergillus nigertreated rice straw[J]. Ecological Engineering,2016,95(09):793-799.
    [8] FENG Y,WANG Y,WANG Y,et al. Simple fabrication of easy handling millimeter-sized porous attapulgite/polymer beads for heavy metal removal[J]. Journal of Colloid and Interface Science,2017,502(21):52-58.
    [9] YANG H,HUANG X,LIN Z Z,et al. Research progress on ion exchange treatment of heavy metal wastewater[J]. Applied Chemicals,2019,48(7):1675-1680. 杨海,黄新,林子增,等. 离子交换法处理重金属废水的研究进展[J]. 应用化工,2019,48(7):1675-1680.
    [10] ZHAO B,WANG F H,BAO J. Effect of metal-organic framework ZIF-8/Pb on the ultrasonic degradability of heavy metals[J]. Environmental Pollution and Prevention,2015,9(4):1599-1605. 赵斌,王风贺,包健. 金属有机骨架ZIF-8/Pb对重金属超声降解性的影响[J]. 环境污染与防治,2015,9(4):1599-1605.
    [11] WEI W W,CHEN X G. Study on the adsorption effect of modified egg shell on self-prepared copper ion solution[J]. Water Treatment Technology,2018,23(26):121-122. 卫维伟,陈晓光. 改性鸡蛋壳对自配铜离子溶液吸附效果研究[J]. 水处理技术,2018,23(26):121-122.
    [12] MARISELA M Q,LÓPEZ-MALDONADO E A,ADRI O T. Innovative uses of carbamoyl benzoic acids in coagulation flocculation’s processes of wastewater[J]. Chemical Engineering Journal,2017,307(1):981-988.
    [13] ROBERT C. CHENG S. Enhanced coagulation for arsenic removal[J]. American Water Works Association,1994,86(9):79-90.
    [14] AYOUB G,SEMERJIAN L,ACRA A,et al. Heavy metal removal by coagulation with seawater liquid bittern[J]. Journal of Environmental Engineering,2001,127(3):196-207.
    [15] DIALYNAS E,DIAMADOPOULOS E. Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater[J]. Desalination,2009,238(1):302-311.
    [16] ZHAO Y,PAN Y,LIU W,et al. Removal of heavy metal ions from aqueous solutions by adsorption onto ZIF-8 nanocrystals[J]. Chemistry Letters,2015,44(6):758-760.
    [17] VENNA S R,CARREON M A. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation[J]. Journal of the American Chemical Society,2010,132(1):76-78.
    [18] GUO X X,LIU J G,WANG P,et al. Preparation of ZIF-8 and its adsorption of tetracycline by electrochemical deposition[J]. Environmental Chemistry,2020,39(3):581-592. 郭新兴,刘建国,王鹏,等. 电化学沉积法制备ZIF-8及其对四环素的吸附[J]. 环境化学,2020,39(3):581-592.
    [19] LI K,MIWORNUNYUIE N,CHEN L,et al. Sustainable application of ZIF-8 for heavy-metal removal in aqueous solutions[J]. Sustainability,2021,13(2):984.
    [20] ZHOU L,LI G O,et al. Simultaneous removal of mixed contaminants,copper and norfloxacin,from aqueous solution by ZIF-8[J]. Chemical Engineering Journal,2019,32(362):628-637.
    [21] YU R,WU Z C. High adsorption for ofloxacin and reusability by the use of ZIF-8 for wastewater treatment[J]. Microporous and Mesoporous Materials,2020,308:110494.
    [22] NIKNAM S M,GHAHRAMANINEZHAD M,EYDIFARASH M. Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr(Ⅵ)ions from aqueous solution[J]. Environmental Science and Pollution Research,2017,24(10):9624-9634.
    [23] YANG X,ZHOU Y H,SUN Z J,et al. Effective strategy to fabricate ZIF-8@ZIF-8/polyacrylonitrile nanofibers with high loading efficiency and improved removing of Cr(Ⅵ)[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,603:125292.
    [24] ZHU K R,CHEN C L,XU H,et al. Cr(Ⅵ)reduction and immobilization by core-double-shell structured magnetic polydopamine@zeolitic idazolate frameworks-8 microspheres[J]. ACS Sustainable Chemistry& Engineering,2017,5(8):6795-6802.
    [25] WANG C L,YANG R Q,WANG H F. Synthesis of ZIF-8/fly ash composite for adsorption of Cu2+,Zn2+ and Ni2+ from aqueous solutions[J]. Materials,2020,13(1).
    [26] JIN H,XU H,WANG N,et al. Fabrication of carboxymethylcellulose/metal-organic framework beads for removal of Pb(II)from aqueous solution[J]. Materials,2019,12(6):1944-1956.
    [27] GUPTA V. Application of low-cost adsorbents for dye removal:a review[J]. Journal of Environmental Management,2009,90(8):2313- 2342.
    [28] ATEFEH E,HASSAN A,MAHDI E,et al. Synthesis of sodium alginate/carboxy-methyl cellulose/Cu-based metal-organic framework composite for adsorption of tetracycline from aqueous solution:isotherm,kinetic and thermodynamic approach[J]. Surfaces and Interfaces,2022,36:2468-2475.
    [29] YOU Y,LIANG Y,PENG S,et al. Modeling coupled kinetics of arsenic adsorption/desorption and oxidation in ferrihydrite-Mn(Ⅱ)/manganese oxides systems[J]. Chemosphere,2020,244(03):125-131.
    [30] LIU J,ZHANG C J,MIAO D G,et al. Preparation and characterization of carboxymethylcellulose hydrogel fibers[J]. Journal of Engineered Fibers and Fabrics,2018,13(3):6-13.
    [31] HE X,DENG F,SHEN T,et al. Exceptional adsorption of arsenic by zirconium metal-organic frameworks:engineering exploration and mechanism insight[J]. Journal of Colloid and Interface Science,2019,539(12):223-234.
    [32] WANG P,WANG L,DONG S,et al. Adsorption of hexavalent chromium by metal framework ZIF-8[J]. New Journal of Chemistry,2018,42(21):17740-17749.
    [33] KOHSARI I,SHARIATINIA Z,POURMORTAZAVI S M. Antibacterial electrospun chitosan polyethylene oxide nanocomposite mats containing bioactive silver nanoparticles[J]. Carbohydrate Polymers,2016,140(12):287-298.
    [34] XUAN W,ZHU C,LIU Y,ET AL. Mesoporous metal-organic framework materials[J]. Journal of Colloid and Interface Science,2012,41(5):1677-1695.
    [35] NGHIEM L D,COLEMAN P J. NF/RO filtration of the hydrophobic ionogenic compound triclosan:transport mechanisms and the influence of membrane fouling[J]. Chemical Engineering Journal,2018,62(3):709-716.
    [36] AHMED M J,ISLAM M A,ASIF M.,al et,Human hair-derived high surface area porous carbon material for the adsorption isotherm and kinetics of tetracycline antibiotics[J]. Bio-resource Technology,2017,243(12):778-784.
    [37] MA Y,ZHOU Q,ZHOU S,et al. A bifunctional adsorbent with high surface area and cation exchange property for synergistic removal of tetracycline and TC[J]. Chemical Engineering Journal,2014,45(256):26-33.
    [38] ZHOU Y,XU Y B,XU J X,et al. Combined toxic effects of heavy metals and antibiotics on a pseudomonas fluorescens strain ZIF-8 isolated from swine wastewater[J]. International Journal of Molecular Sciences,2015,67(87):162-167.
    [39] MARTINS V V,ZANETTI M O B,PITONDO A S,et al. Aquatic environments polluted with antibiotics and heavy metals:a human health hazard[J]. Environmental Science and Pollution Research,2014,89(9):5873-5878.
    [40] CHEN S,LI X,SUN G,et al. Heavy metal induced antibiotic resistance in bacterium LSJC7[J]. International Journal of Molecular Sciences,2015,98(10):1162-1168.
    [41] PRIETO A,MÖDER M,RODIL R,et al. Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products[J]. Bioresource Technology,2011,56(23):10987-10995.
    [42] LI Z Q,YANG J C,SUI K W,et al. Facile synthesis of metal-organic framework MOF-808 for arsenic removal[J]. Materials Letters,2015,160(09):412-414.
    [43] ZHAO X,JIA Q,SONG N,et al. Adsorption of Pb(II)from an aqueous solution by titanium dioxide/carbon nanotube nanocomposites:kinetics,thermodynamics,and isotherms[J]. Journal of Chemical& Engineering Data,2010,55(10):4428-4433.
    [44] DING K,WANG W,YU D,et al. Facile formation of flexible Ag/AgCl/polydopamine/cotton fabric composite photocatalysts as an efficient visible-light photocatalysts[J]. Applied Surface Science,2018,454(06):101-111.
    [45] LI X,PI Y,WU L,et al. Facilitation of the visible light-induced Fenton-like excitation of H2O2 viaheterojunction of g-C3N4/NH2-iron terephthalate metal-organic framework for MB degradation[J]. Applied Catalysis B:Environmental,2017,202(12):653-663.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  47
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-09
  • 录用日期:  2023-08-16
  • 修回日期:  2023-07-13
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回