中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进的YOLOv5算法下的生活垃圾智能分类系统设计

叶涵宇 郭来德 李玥娴 邓文博

叶涵宇,郭来德,李玥娴,等.改进的YOLOv5算法下的生活垃圾智能分类系统设计[J].环境工程,2025,43(4):232-241. doi: 10.13205/j.hjgc.202504023
引用本文: 叶涵宇,郭来德,李玥娴,等.改进的YOLOv5算法下的生活垃圾智能分类系统设计[J].环境工程,2025,43(4):232-241. doi: 10.13205/j.hjgc.202504023
YE H Y,GUO L D,LI Y X,et al.Design of an intelligent classification system for domestic garbage based on improved YOLOv5 algorithm[J].Environmental Engineering,2025,43(4):232-241. doi: 10.13205/j.hjgc.202504023
Citation: YE H Y,GUO L D,LI Y X,et al.Design of an intelligent classification system for domestic garbage based on improved YOLOv5 algorithm[J].Environmental Engineering,2025,43(4):232-241. doi: 10.13205/j.hjgc.202504023

改进的YOLOv5算法下的生活垃圾智能分类系统设计

doi: 10.13205/j.hjgc.202504023
基金项目: 

国家自然科学基金项目(61273239);全国大学生创新训练计划项目(202410148008)

详细信息
    作者简介:

    叶涵宇(2003—),男,本科,主要研究方向为计算机视觉和机器学习。15039449904@163.com

    通讯作者:

    郭来德(1978—),男,副教授,硕士生导师,主要研究方向为计算机视觉、机器学习。13842302248@163.com

Design of an intelligent classification system for domestic garbage based on improved YOLOv5 algorithm

  • 摘要: 针对生活垃圾分类难、资源回收利用率低等问题,提出了一种基于改进的YOLOv5算法的生活垃圾智能分类系统设计策略,旨在提高生活垃圾分拣过程中对垃圾类别识别的实时性和准确性。该算法以YOLOv5为基础网络,使用GhostNet的C3Ghost模块替换原始的YOLOv5架构中的C3模块,采用了更新的损失函数SIoU,并利用Ghost卷积与CBAM注意力机制级联结构,实现了轻量化主干网络和提高模型性能的目标。实验结果表明,该算法相比YOLOv5,基础网络权重由7.111 M下降至4.039 M,每秒处理帧数从73.8帧提升至82.0帧,模型轻量化达到50%,更易于移植到移动设备上,且具有良好的鲁棒性以及检测性能。该系统应用红外感应、激光测距、图像识别、电机驱动等技术,设计了具备自动开合、破袋、分类、油水渣分离、溢满反馈等功能的智能分类垃圾箱,能够有效收集各类生活垃圾,避免接触传播病菌,提高工作效率,节省人力成本,促进物资的循环利用。
  • 1  生活垃圾智能分类系统整体组成

    1.  Overall composition of the intelligent classification system for domestic garbage

    2  生活垃圾智能分类系统结构

    2.  Structure of the intelligent classification system for domestic garbage

    3  改进后的YOLOv5结构

    3.  The improved YOLOv5 structure

    4  Ghost卷积实现过程

    4.  The Ghost convolution implementation process

    5  CBAM注意力机制结构

    5.  CBAM attention mechanistic structure

    6  Ghost卷积与CBAM注意力机制级联结构

    6.  Structure of the Ghost convolution combined with the CBAM attention mechanism cascade

    7  数据集的可视化

    7.  Visualization of the data set

    8  YOLOv5模型结果

    8.  YOLOv5 model results

    9  模型改进后的检测效果

    9.  Detection effect after model improvement

    10  智能分类垃圾箱的外观和功能设计

    b-工作流程 1—箱体 2—可开门 3—光伏发电板 4—红外传感器 5—投放口6—盖板7—破袋装置 8—引流管滤网 9—引流管 10—传送轨道11—差速分离装置 12—识别分类装置 13—压缩装置 14—溢满检测装置 15—垃圾储存装置

    10.  Appearance and function design of the intelligent classification dustbin

    1  消融实验结果

    1.   Results of ablation experiments

    模型精度/%召回率/%平均精度值/%GFLOPS/s每秒处理帧数FPS/(帧/s)参数量
    YOLOv580.877.583.416.273.87111327
    YOLOv5+Ghost76.668.573.58.569.13773542
    YOLOv5+Ghost-CBAM78.373.578.618.678.03988432
    YOLOv5+Ghost-CBAM+SIoU89.387.880.518.982.04039271
    下载: 导出CSV

    2  不同算法实验对比

    2.   Experimental comparison of different algorithms

    模型平均精度值/%GFLOPS/s每秒处理帧数FPS/(帧/s)参数量
    YOLOv383.23.113.5237957468
    YOLOv484.83.314.7256347894
    YOLOv583.416.273.87111327
    Faster R-CNN87.11.88.05472334176
    SSD80.15.725.0150213546
    CenterNet79.37.433.0285426812
    YOLOv5 + Ghost-CBAM + SIoU80.518.982.04039271
    下载: 导出CSV
  • [1] YANG Y R. Financial performance analysis and countermeasure research of China Tianying Company under the background of garbage classification[D]. Zhengzhou:North China University of Water Resources and Hydropower Power,2021. 杨薏任. 垃圾分类背景下中国天楹公司财务绩效分析及对策研究[D]. 郑州:华北水利水电大学,2021.
    [2] ZHANG C N. Research on the design of domestic garbage classification and recycling system and equipment[D]. Shenyang:Shenyang University of Science and Technology,2020. 张春男. 生活垃圾分类回收体系及设备设计研究[D]. 沈阳:沈阳理工大学,2020.
    [3] DANG H S,ZHANG C,PANG Y. Research on a rapid sorting system for industrial robots based on visual guidance[J]. Electronic Devices,2017,40(2):481-485. 党宏社,张超,庞毅. 基于视觉引导的工业机器人快速分拣系统研究[J]. 电子器件,2017,40(2):481-485.
    [4] FAN J H,CUI L Z. Garbage classification target detection model based on Yolo_ES[J]. Electronic Measurement Technology,2023,46(1):160-166. 范金豪,崔立志. 基于Yolo_ES的垃圾分类目标检测模型[J]. 电子测量技术,2023,46(1):160-166.
    [5] ZHANG R,YIN D,DING J,et al. A detection method for low-pixel ratio object[J]. Multimedia Tools and Applications,2019,78(9):11655-11674
    [6] LIANG S,GU Y. A deep convolutional neural network to simultaneously localize and recognize waste types in images[J]. Waste Management,2021,126:247-257.
    [7] WU P B,YAO M L,WANG T,et al. Design of a garbage sorting robot based on TensorFlow[J]. Laboratory Research and Exploration,2020,39(6):117-122. 吴蓬勃,姚美菱,王拓,等. 基于TensorFlow的垃圾分拣机器人设计[J]. 实验室研究与探索,2020,39(6):117-122.
    [8] ZHANG Y W,LI S H,ZHANG W,et al. Design of intelligent sorting system for recyclable garbage based on machine vision[J]. Laboratory Research and Exploration,2022,41(7):98-103,107. 张月文,李松恒,张炜,等. 基于机器视觉的可回收垃圾智能分拣系统设计[J]. 实验室研究与探索,2022,41(7):98-103,107.
    [9] LI C X. Garbage identification and classification based on attention mechanism and convolutional neural network[D]. Taiyuan:Shanxi University,2024. 李晨曦. 基于注意力机制和卷积神经网络的垃圾识别与分类[D]. 太原:山西大学,2024.
    [10] ZHANG C Q. Research and development of a robotic garbage sorting system based on image processing[D]. Shanghai:Donghua University,2024. 张传庆. 基于图像处理的机器人垃圾分拣系统研究与开发[D]. 上海:东华大学,2024.
    [11] CAO M L,FU H,ZHU J Y. Lightweight tea bud recognition network integrating GhostNet and YOLOv5[J]. Math Biosci Eng,2022,19(12):12897-12914.
    [12] ARIFANDO R,ETO S,WADA C. Improved YOLOv5-based lightweight object detection algorithm for people with visual impairment to detect buses[J]. Applied Sciences,2023,13(9):5802. https://doi.org/10.3390/app13095802.
    [13] ZHU C Y. A YOLOv5 traffic sign target detection algorithm integrated with the attention mechanism[J]. Value Engineering,2024,43(13):113-116. 朱春燕. 融合注意力机制的YOLOv5交通标志目标检测算法[J]. 价值工程,2024,43(13):113-116.
    [14] LV M,SU W H. YOLOV5-CBAM-C3TR:an optimized model based on transformer module and attention mechanism for apple leaf disease detection[J]. Frontiers in Plant Science. 2024,14:1323301.
    [15] RAJ G D,PRABADEVI B. Steel strip quality assurance with YOLOV7-CSF:A coordinate attention and SIoU fusion approach[J]. IEEE Access,2023(11):129493-129506.
    [16] ZHANG Y,LI H,WANG R,et al. Constrained-SIoU:a metric for horizontal candidates in multi-oriented object detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2022,15(1):956-967.
    [17] LIANG J R,CHEN Z,DONG G J,et al. Research on vehicle detection methods based on the cascade structure of Ghost convolution and channel attention mechanism[J]. Journal of Tianjin University,2023,56(2):193-199. 梁继然,陈壮,董国军,等. 基于Ghost卷积和通道注意力机制级联结构的车辆检测方法研究[J]. 天津大学学报,2023,56(2):193-199.
    [18] ZHU X Q,LI D. Detection system based on YOLO5Face for mask wearing at the railway station[J]. Electronic Test,2021(24):50-52. 朱鑫鹏,李丹. 基于YOLO5Face在火车站口罩佩戴的检测系统[J]. 电子测试,2021(24):50-52.
    [19] REDMON J,FARHADI A. Yolov3:An incremental improvement[J]. ArXiv Preprint,2018,ArXiv:1804.02767.
    [20] REN S,HE K,GIRSHICK R,et al. FasterR-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis& Machine Intelligence,2017,39(6):1137-1149.
    [21] LIU W,ANGUELOV D,ERHAN D,et al. SSD:Single shot multibox detector[C]// 2016 European Conference on Computer Vision. Amsterdam,The Netherlands,2016:21-37.
    [22] ZHOU X Y,WANG D Q,KRÄHENBÜHL P. Objects as Points[EB/OL]. https://arxiv.org/pdf/1904.07850.pdf.2019-04-25.
    [23] WANG W S,NIAN C X,ZHANG C,et al. Design of non-residential automatic garbage sorting bins based on the YOLO v5 model[J]. Environmental Engineering,2022,40(3):159-165 王文胜,年诚旭,张超 等. 基于YOLO v5模型的非住宅区自动垃圾分类箱设计[J]. 环境工程,2022,40(3):159-165.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  107
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-18
  • 录用日期:  2024-06-14
  • 修回日期:  2024-06-04
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回