Optimization of preparation of ceramsite using fly ash, red mud and sludge by response surface methodology and its lead removal mechanism
-
摘要: 以粉煤灰、赤泥和污泥为原料采用烧结法制陶粒,在单因素实验基础上利用响应曲面法优化陶粒制备条件,根据陶粒表征分析及吸附动力学和吸附等温模型拟合探究其对水中低浓度Pb2+吸附特性。结果表明:响应曲面模型拟合预测效果较好,实测值与预测值的相对误差为1.75%;制备因素对陶粒吸附Pb2+效果影响顺序为烧结温度 > 烧结时间 > 预热温度。在原料(粉煤灰:赤泥:污泥)质量比为75∶20∶5、预热温度359 ℃、烧结温度1053 ℃、烧结时间9 min条件下制备陶粒,对Pb2+初始浓度为10 mg/L的去除率和吸附量分别为91.05%和9.11 mg/g。陶粒对Pb2+(初始浓度分别为5,10 mg/L)的吸附符合准二级动力学模型(R2分别为0.9992和0.9981)和Langmuir吸附等温模型(R2分别为0.9986和0.9967),吸附过程中O—H、C=O、C=C、Si—O和Al—O起重要作用,吸附Pb2+后陶粒矿物成分的结晶度减少。Abstract: Fly ash, red mud, and sludge were utilized as raw materials to prepare the ceramsite by the sintering method in this research, to investigate the adsorption effect of ceramsite and mechanism for Pb2+ removal. The optimal conditions for preparing ceramsite of fly ash, red mud, and sludge were determined by using the response surface method on the basis of the insights gained from preliminary single factor experiments. In order to investigate the adsorption characteristics of the ceramsite on low concentrations of Pb2+ in water, characterization analysis was conducted on the ceramsite, combined with the adsorption kinetics and adsorption isotherm model fitting. The results showed that the response surface model had a good prediction performance, and the relative error between the measured values and the predicted values was 1.75%. The influence of each preparation factor on the adsorption effect of Pb2+ on ceramsite followed a descending order of sintering temperature, sintering time and preheating temperature. The ceramsite prepared in the conditions of raw material ratio (fly ash:red mud:sludge) of 75∶20∶5, preheating temperature of 359℃, sintering temperature of 1053℃, and sintering time of 9 min had the best adsorption performance, and the removal rate and adsorption capacity of Pb2+ at an initial concentration of 10 mg/L by the ceramsite were found to be 91.05% and 9.11 mg/g, respectively. The adsorption process of Pb2+ with an initial concentration of 5, 10mg/L by ceramsite, was in accordance with the quasi secondary kinetic model (with the R2 of 0.9992 and 0.9981, respectively) and Langmuir adsorption isothermal model (with the R2 of 0.9986 and 0.9967, respectively). The functional groups such as O—H, C=O, C=C, Si—O and Al—O played an important role in the adsorption process of Pb2+ by ceramsite. The crystallinity of ceramsite mineral components decreased after the adsorption of Pb2+.
-
Key words:
- response surface methodology /
- solid waste /
- ceramsite /
- Pb2+ /
- adsorption /
- mechanism
-
1 原料的主要成分
1. Main components of raw materials
原料 SiO2 Al2O3 Fe2O3 TiO2 MgO Na2O 粉煤灰 56.74 24.58 6.55 1.86 1.45 1.34 赤泥 25.79 11.06 7.39 2.02 1.01 1.11 脱水污泥 31.25 7.67 18.61 3.02 0.85 1.06 2 实验因素与水平
2. Experimental factors and levels
水平 A预热温度/℃ B烧结温度/℃ C烧结时间/min -1 300 1025 5 0 350 1050 10 1 400 1075 15 3 响应曲面实验设计及实验结果
3. Experimental design and results of response surface
编号 A(预热温度/℃) B(烧结温度/℃) C(烧结时间/min) D(去除率/%) 编号 A(预热温度/℃) B(烧结温度/℃) C(烧结时间/min) D(去除率/%) 1 350 1050 10 93.49 10 350 1025 15 70.96 2 300 1050 5 87.53 11 300 1050 15 80.91 3 400 1075 10 81.06 12 350 1025 5 75.78 4 400 1050 15 87.93 13 400 1050 5 87.54 5 350 1050 10 91.81 14 400 1025 10 74.26 6 300 1025 10 75.05 15 350 1075 15 75.06 7 350 1050 10 92.27 16 350 1050 10 90.23 8 300 1075 10 78.21 17 350 1075 5 80.82 9 350 1050 10 93.21 — — — — — 4 回归方程方差分析
4. Analysis of variance for regression equations
项目 平方和 自由度 均方 F值 P值 Model 917.29 9 101.92 58.20 < 0.0001 A 10.33 1 10.33 5.90 0.0455 B 45.60 1 45.60 26.04 0.0014 C 35.32 1 35.32 20.17 0.0028 AB 3.31 1 3.31 1.89 0.2114 AC 12.29 1 12.29 7.01 0.0330 BC 0.22 1 0.22 0.13 0.7329 A2 23.60 1 23.60 13.47 0.0080 B2 678.02 1 678.02 387.15 < 0.0001 C2 62.65 1 62.65 35.77 0.0006 残差 12.26 7 1.75 ‒ ‒ 失拟项 5.64 3 1.85 1.10 0.4468 纯误差 6.72 4 1.68 ‒ ‒ 总离差 929.55 16 ‒ ‒ ‒ 5 准一级动力学模型拟合参数
5. Fitting parameters of the quasi first order kinetic model
初始浓度 q/(mg/g) qe/(mg/g) K1/min-1 R2 5 mg/L 4.66 1.63 0.0048 0.8765 10 mg/L 9.20 4.23 0.0059 0.9372 6 准二级动力学模型拟合参数
6. Fitting parameters of the quasi second order kinetic model
初始浓度 q/(mg/g) qe/(mg/g) K2/[g/(mg∙min)] R2 5 mg/L 4.66 4.79 0.0068 0.9992 10 mg/L 9.20 9.67 0.0025 0.9981 7 颗粒内扩散学模型拟合参数
7. Fitting parameters of the intragranular diffusion model
初始浓度 Kp1/[mg/(g·min1/2)] R12 C1 Kp2/[mg/(g·min1/2)] R22 C2 5 mg/L 0.14151 0.9710 1.98996 0.0067 0.7596 4.38906 10 mg/L 0.3029 0.9852 3.40667 0.02136 0.9729 8.53676 8 吸附等温模型拟合参数
8. Parameters of adsorption isothermal model fitting results
温度/℃ Langmuir吸附模型 Freundlich吸附模型 Temkin吸附模型 qmax/(mg/g) KL/(L/mg) R2 KF/{mg/[g·(1/mg)1/n ]} 1/n R2 BT KT/(L/mg) R2 25 15.63 1.42 0.9986 7.59 0.49 0.8961 3.13 17.12 0.9777 35 18.14 1.28 0.9967 8.64 0.52 0.9526 3.51 17.09 0.9817 -
[1] LI Q G,LIU G H,QI L,et al. Heavy metal-contained wastewater in China:discharge,management and treatment[J]. Science of the Total Environment,2022,808:152091. [2] CAO Y X,ZHAO M J,MA X Y,et al. A critical review on the interactions of microplastics with heavy metals:mechanismand their combined effect on organisms and humans[J]. Science of the Total Environment,2021,788:147620. [3] MARIANA M,ABDUL K,MISTAR E M,et al. Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption[J]. Journal of Water Process Engineering,2021,43:102221. [4] XU Z,ZHANG Q R,LI X C,et al. A critical review on chemical analysis of heavy metal complexes in water/wastewater and the mechanism of treatment methods[J]. Chemical Engineering Journal,2022,429:131688. [5] WANG H X,XU J L,LIU Y Q,et al. Preparation of ceramsite from municipal sludge and its application in water treatment:a review[J]. Journal of Environmental Management,2021,287:112374. [6] WANG Q,QI Y,WANG K,et al. Preparation of fly ash-based no-sintered high-strength filter and its Removal of Ni2+[J]. Journal of the Chinese Ceramic Society,2023,51(4):982-990. 王倩,齐怡,王坤,等. 粉煤灰基免烧高强滤料的制备及其对Ni2+的去除[J]. 硅酸盐学报,2023,51(04):982-990. [7] WANG Y T,GONG S Y,LI Y Z,et al. Adsorptive removal of tetracycline by sustainable ceramsite substrate from bentonite/red mud/pine sawdust[J]. Scientific Reports,2020,10(1). doi: 10.1038/s41598-020-59850-2. [8] FENG Y L,GAO G,CHAI X L,et al. Preparation process of municipal sludge tailing ceramsite and its performance and application[J]. Bulletin of the Chinese Ceramic Society,2023,42(04):1374-1383. 冯玉林,高鸽,柴喜林,等. 城市污泥尾矿陶粒的制备工艺及其性能与应用[J]. 硅酸盐通报,2023,42(4):1374-1383. [9] MASON R L,GUNST R F,HESS J L. Statistical design and analysis of experiments with applications to engineering and science[M]. The United States of America:John Wiley and Sons Publication,2003. [10] TEPARI A E,NAKHLA G,HAROUN M B,et al. Co-fermentation of carbohydrates and proteins for biohydrogen production:sta-tistical optimization using response surface methodology[J]. International Journal of Hydrogen Energy,2020,45(4). doi: 10.1016/j.ijhydene.2019.11.160. [11] MARCOS J R,GOMES C M,COSTA C D M P,et al. Reactive blue 21 exhaustion degree investigated using the surface response methodology as an auxiliary tool in cotton dyeing[J]. Journal of Natural Fibers,2021,18(4). doi: 10.1080/15440478.2019.1636739. [12] LONG J,ZHAO X,LIANG F,et al. Optimization of fermentation conditions for an Escherichia coli strain engineered using the response surface method to produce a novel therapeutic DNA vaccine for rheumatoid arthritis[J]. Journal of Biological Engineering,2018,12(1). doi: 10.1186/s13036-018-0110-y. [13] CHRISTOS P. Design of experiments as a tool for optimization in recombinant protein biotechnology:from constructs to crystals[J]. Molecular Biotechnology,2019,61(12). doi: 10.1007/s12033-019-00218-x. [14] RILEY C M. Relation of Chemical Properties to the Bloating of Clays[J]. Journal of the American Ceramic Society,1951,34(4). doi: 10.1111/j.1151-2916.1951.tb11619.x. [15] CHIOU I J,WANG K S,CHEN C H,et al. Lightweight aggregate made from sewage sludge and incinerated ash[J]. Waste Management,2006,26(12):1453-1461. doi: 10.1016/j.wasman.2005.11.024 [16] SHAO Y Y,SHAO Y Q,ZHANG W Y,et al. Preparation of municipal solid waste incineration fly ash-based ceramsite and its mechanisms of heavy metal immobilization[J]. Waste Management,2022,143. doi: 10.1016/J.WASMAN.2022.02.021. [17] FANG W C,CHENG X X,SUN C R. Optimization of preparation of sludge/fly ash composite ceramsite filler materials by response surface methodology[J]. Inorganic Chemicals Industry,2022,54(9):119-125,142. 方伟成,程星星,孙常荣. 响应曲面法优化污泥/粉煤灰复合陶粒滤料的制备[J]. 无机盐工业,2022,54(9):119-125,142. [18] MA H Q,TIAN Y M,LI G M. Haiqiang M,Yuming T,Guomin L. Effects of sintering temperature on microstructure,properties,and crushing behavior of ceramic proppants[J]. International Journal of Applied Ceramic Technology,2019,16(4). doi: 10.1111/ijac.13204. [19] WU X,HUO Z,REN Q,et al. Preparation and characterization of ceramic proppants with low density and high strength using fly ash[J]. Journal of Alloys and Compounds,2017,702. doi: 10.1016/j.jallcom.2017.01.262. [20] FANG W C,CHENG X X,SUN C J,et al. Optimization of the fabrication of sustainable ceramsite adsorbent from coal fly ash/waterworks sludge/waste glass for decolorization of malachite green[J]. Adsorption Science& Technology,2023,2023. doi: 10.1155/2023/8581697. [21] MI H C,YI L S,WU Q,et al. Preparation of high-strength ceramsite from red mud,fly ash,and bentonite[J]. Ceramics International,2021,47(13). doi: 10.1016/J.CERAMINT.2021.03.141. [22] LI Y L,XU M Y,LI Q,et al. Study on the properties and heavy metal solidification characteristics of sintered ceramsites composed of magnesite tailings,sewage sludge,and coal gangue[J]. International Journal of Environmental Research and Public Health,2022,19(17). doi: 10.3390/IJERPH191711128. [23] LI Z M,LI C H,ZHA Y H,et al. Study on the adsorption mechanism of Cu2+ by steel slag-manganese slag composite ceramics[J]. Industrial Water Treatment,2022,42(8):113-119. 李子木,李灿华,查雨虹,等. 钢渣-锰渣复合陶粒对Cu2+的吸附机理研究[J]. 工业水处理,2022,42(8):113-119. [24] XU G R,ZOU J L,LI G B. Ceramsite obtained from water and waste water sludge and its characteristics affected by(Fe2O3+CaO+MgO)/(SiO2+Al2O3)[J]. Water Research,2009,43(11):2885-2893. doi: 10.1016/j.watres.2009.03.046. [25] AYOOB S,GUPTA A K,BHAKAT P B,et al. Investigations on the kinetics and mechanisms of sorptive removal of fluoride from water using alumina cement granules[J]. Chemical Engineering Journal,2008,140(1):6-14. doi: 10.1016/j.cej.2007.08.029. [26] THOBILE M,MALVIN M,EMMANUEL V P. Removal of hexavalent chromium by polyethyleneimine impregnated activated carbon:intra-particle diffusion,kinetics and isotherms[J]. Journal of Materials Research and Technology,2022,18. doi: 10.1016/J.JMRT.2022.03.062. [27] CHANG C,WANG S L,GUO J Y,et al. Adsorption kinetics and mechanism of copper ion on biochar with different pyrolysis condition[J]. Acta Scientiae Circumstantiae,2016,36(07):2491-2502. doi:10.13671/j.hjkxxb.2015.0742. 常春,王胜利,郭景阳,等. 不同热解条件下合成生物炭对铜离子的吸附动力学研究[J]. 环境科学学报,2016,36(07):2491-2502. doi:10.13671/j.hjkxxb.2015.0742. [28] QIAO L,CHENG J,MENG N,et al. An isothermal adsorption model for adsorption of substrates by anammox extracellular polymeric substance proteins:Establishment,verification,and determination of adsorption capacity[J]. Journal of Water Process Engineering,2021,43. doi: 10.1016/J.JWPE.2021.102233. -
登录
注册
E-alert
登录
注册
E-alert
下载: