中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耐盐菌海洋单胞菌GK1基因组尺度代谢网络模型的构建

张佳 侯雅男 申邵恒 黄聪

张佳, 侯雅男, 申邵恒, 黄聪. 耐盐菌海洋单胞菌GK1基因组尺度代谢网络模型的构建[J]. 环境工程, 2025, 43(5): 38-45. doi: 10.13205/j.hjgc.202505005
引用本文: 张佳, 侯雅男, 申邵恒, 黄聪. 耐盐菌海洋单胞菌GK1基因组尺度代谢网络模型的构建[J]. 环境工程, 2025, 43(5): 38-45. doi: 10.13205/j.hjgc.202505005
ZHANG Jia, HOU Yanan, SHEN Shaoheng, HUANG Cong. Construction of a genome-scale metabolic network model for the halotolerant bacterium Oceanimosas sp. GK1[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(5): 38-45. doi: 10.13205/j.hjgc.202505005
Citation: ZHANG Jia, HOU Yanan, SHEN Shaoheng, HUANG Cong. Construction of a genome-scale metabolic network model for the halotolerant bacterium Oceanimosas sp. GK1[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(5): 38-45. doi: 10.13205/j.hjgc.202505005

耐盐菌海洋单胞菌GK1基因组尺度代谢网络模型的构建

doi: 10.13205/j.hjgc.202505005
基金项目: 

天津市研究生科研创新项目“基于生命周期理论的生物电化学耦合A2O工艺处理效能及环境影响研究”(2022SKYZ321)

详细信息
    作者简介:

    张佳(1999—),女,硕士研究生,主要研究方向为污水处理与资源化。zhangjia@tib.cas.cn

    通讯作者:

    侯雅男(1989—),女,副教授,主要研究方向为污水处理与资源化。houyn2013@163.com;黄聪(1984—),男,副研究员,主要研究方向为工业废水处理技术。huangc@tib.cas.cn

    侯雅男(1989—),女,副教授,主要研究方向为污水处理与资源化。houyn2013@163.com;黄聪(1984—),男,副研究员,主要研究方向为工业废水处理技术。huangc@tib.cas.cn

Construction of a genome-scale metabolic network model for the halotolerant bacterium Oceanimosas sp. GK1

  • 摘要: 随着高通量技术的发展,基因组尺度代谢网络模型(GEMs)作为一种新兴模型,可以在系统层面上理解微生物的生化表型,描述和预测其菌株的行为。研究构建了来自高盐废水活性污泥中海洋单胞菌GK1(Oceanimonas sp.GK1)的GEM,通过迭代修正,最终形成iZJ929模型。借助此模型,预测了该菌株的中心代谢途径代谢通量分布,发现在缺氧条件下,糖酵解和三羧酸循环途径通量增加,以满足细胞的能量需求。分析了其产四氢嘧啶的过表达靶点,在以葡萄糖和乙酸作为模拟底物时,分别有8种和7种潜在扩增靶点,为后续遗传改造提供有效信息帮助。该研究表明GEMs是环境工程领域的一个有效工具,此模型的建立为解析Oceanimonas sp.GK1其生长表型提供理论支持。
  • [1] SONG Q,CHEN X,ZHOU W,et al. Application of a spiral symmetric stream anaerobic bioreactor for treating saline heparin sodium pharmaceutical wastewater:reactor operating characteristics,organics degradation pathway and salt tolerance mechanism[J]. Water Research,2021,205,116464.
    [2] POUNSAMY M,SOMASUNDARAM S,PALANIVEL S,et al. A novel protease-immobilized carbon catalyst for the effective fragmentation of proteins in high-TDS wastewater generated in tanneries:spectral and electrochemical studies[J]. Environmental Research,2019,172:408-419.
    [3] HU X,LI D,QIAO Y,et al. Salt tolerance mechanism of a hydrocarbon-degrading strain:salt tolerance mediated by accumulated betaine in cells[J]. Journal of Hazardous Materials,2020,392,122326.
    [4] ABDI Z G,LAI J Y,CHUNG T S. Green modification of P84 co-polyimide with β-cyclodextrin for separation of dye/salt mixtures[J]. Desalination,2023,549,116365.
    [5] ZHANG M,ZHANG L,WANG H,et al. Hybrid electrocatalytic ozonation treatment of high-salinity organic wastewater using Ni–Ce/OMC particle electrodes[J]. Science of the Total Environment,2020,724:138170.
    [6] XIA Y,JIANG X,WANG Y,et al. Enhanced anaerobic reduction of nitrobenzene at high salinity by betaine acting as osmoprotectant and regulator of metabolism[J]. Water Research,2022,223:118982.
    [7] CZECH L,HERMANN L,STÖVEKEN N,et al. Role of the extremolytes ectoine and hydroxyectoine as stress protectants and nutrients:genetics,phylogenomics,biochemistry,and structural analysis[J]. Genes,2018,9(4):177.
    [8] FEIERABEND M,RENZ A,ZELLE E,et al. High-quality genome-scale reconstruction of Corynebacterium glutamicum ATCC 13032[J]. Frontiers in Microbiology,2021,12:. 3432.
    [9] BI X,CHENG Y,XU X,et al. Etibsu1209:A comprehensive multiscale metabolic model for Bacillus subtilis[J]. Biotechnology and Bioengineering,2023,120(6):1623-1639.
    [10] GU C,KIM G B,KIM W J,et al. Current status and applications of genome-scale metabolic models[J]. Genome Biology,2019,20(1):121.
    [11] LU H,LI F,SÁNCHEZ B J,et al. A consensus S. Cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism[J]. Nature Communications,2019,10(1):3586.
    [12] ZHANG Y,CAI J,SHANG X,et al. A new genome-scale metabolic model of Corynebacterium glutamicum and its application[J]. Biotechnology for Biofuels,2017,10(1):169
    [13] EDWARDS J S,PALSSON B O. Systems properties of the Haemophilus influenzae Rd metabolic genotype[J]. Journal of Biological Chemistry,1999,274(25):17410-17416.
    [14] PARSA L,AZARBAIJANI R,SARIKHAN S,et al. Complete genome sequence of Oceanimonas sp. GK1,a halotolerant bacterium from Gavkhouni Wetland in Iran[J]. Journal of Bacteriology,2012,194(8):2123-2124.
    [15] PAN Z,ZHOU J,LIN Z,et al. Effects of COD/TN ratio on nitrogen removal efficiency,microbial community for high saline wastewater treatment based on heterotrophic nitrification-aerobic denitrification process[J]. Bioresource Technology,2020,301,122726.
    [16] AZARBAIJANI R,YEGANEH L P,BLOM J,et al. Comparative genome analysis of Oceanimonas sp. GK1,a halotolerant bacterium with considerable xenobiotics degradation potentials[J]. Annals of Microbiology,2015,66(2):703-716.
    [17] AZIZ R K,BARTELS D,BEST A A,et al. The RAST Server:Rapid Annotations using Subsystems Technology[J]. BMC Genomics,2008,9(1):75.
    [18] ARKIN A P,COTTINGHAM R W,HENRY C S,et al. Kbase:The United States Department of Energy Systems Biology Knowledgebase[J]. Nature Biotechnology,2018,36(7):566-569.
    [19] ORTH J D,THIELE I,PALSSON B Ø. What is flux balance analysis?[J]. Nature Biotechnology,2010,28(3):245-248.
    [20] LUO J,YUAN Q,MAO Y,et al. Reconstruction of a genome-scale metabolic network for Shewanella oneidensis MR-1 and analysis of its metabolic potential for bioelectrochemical systems[J]. Frontiers in Bioengineering and Biotechnology,2022,10:913077.
    [21] WU Y,YUAN Q,YANG Y,et al. Construction and application of high-quality genome-scale metabolic model of Zymomonas mobilis to guide rational design of microbial cell factories[J]. Synthetic and Systems Biotechnology,2023,8(3):498-508.
    [22] ARAUJO W L,TOMÀS-Gamisans M,FERRER P,et al. Integration and validation of the genome-scale metabolic models of Pichia pastoris:A comprehensive update of protein glycosylation pathways,lipid and energy metabolism[J]. Plos ONE,2016,11(1):e0148031.
    [23] PIUBELI F,SALVADOR M,ARGANDOÑA M,et al. Insights into metabolic osmoadaptation of the ectoines-producer bacterium Chromohalobacter salexigens through a high-quality genome scale metabolic model[J]. Microbial Cell Factories,2018,17(1):2.
    [24] SHINFUKU Y,SORPITIPORN N,SONO M,et al. Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum[J]. Microbial Cell Factories,2009,8(1):43.
    [25] LIU D,XU Z,LI J,et al. Reconstruction and analysis of genome-scale metabolic model for thermophilic fungus Myceliophthora thermophila[J]. Biotechnology and Bioengineering,2022,119(7):1926-1937.
    [26] BEBER M E,GOLLUB M G,MOZAFFARI D,et al. Equilibrator 3.0:a database solution for thermodynamic constant estimation[J]. Nucleic Acids Research,2022,50(D1):D603-D609.
    [27] PACHECO A R,MOEL M,SEGRÈ D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems[J]. Nature Communications,2019,10(1):4620.
    [28] MARTINEZ G R,TEC C D,POSADAS C,et al. The genome-scale metabolic model for the purple non-sulfur bacterium Rhodopseudomonas palustris Bis A53 accurately predicts phenotypes under chemoheterotrophic,chemoautotrophic,photoheterotrophic,and photoautotrophic growth conditions[J]. Plos Computational Biology,2023,19(8):e1011371.
    [29] YILMAZ L S,WALHOUT A J M. A caenorhabditis elegans genome-scale metabolic network model[J]. Cell Systems,2016,2(5):297-311.
    [30] BRODDRICK J T,RUBIN B E,WELKIE D G,et al. Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis[J]. Proceedings of the National Academy of Sciences,2016,113(51):E8010-E8019.
    [31] MENG L,LI W,ZHANG S,et al. Effects of sucrose amendment on ammonia assimilation during sewage sludge composting[J]. Bioresource Technology,2016,210:160-166.
    [32] REITZER L. Amino acid synthesis[M].Encyclopedia of Microbiology(Third Edition),Academic Press,2009:1-17.
    [33] ATES Ö,ONER E T,ARGA K Y. Genome-scale reconstruction of metabolic network for a halophilic extremophile,Chromohalobacter salexigens DSM 3043[J]. BMC Systems Biology,2011(5):1-13.
    [34] PARK J M,PARK H M,KIM W J,et al. Flux variability scanning based on enforced objective flux for identifying gene amplification targets[J]. BMC Systems Biology,2012(6):1-11.
    [35] CHOI H S,LEE S Y,KIM T Y,et al. In silico identification of gene amplification targets for improvement of lycopene production[J]. Applied and Environmental Microbiology,2010,76(10):3097-3105.
  • 加载中
计量
  • 文章访问数:  62
  • HTML全文浏览量:  21
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-31
  • 录用日期:  2024-05-31
  • 修回日期:  2024-04-21
  • 网络出版日期:  2025-09-11

目录

    /

    返回文章
    返回