中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2和PANI联合改性活性炭纤维电极去除再生水中Cl-性能探讨

汪玥 梁美生 陈宇航 叶翠平 陈一琛

汪玥, 梁美生, 陈宇航, 叶翠平, 陈一琛. TiO2和PANI联合改性活性炭纤维电极去除再生水中Cl-性能探讨[J]. 环境工程, 2025, 43(5): 46-56. doi: 10.13205/j.hjgc.202505006
引用本文: 汪玥, 梁美生, 陈宇航, 叶翠平, 陈一琛. TiO2和PANI联合改性活性炭纤维电极去除再生水中Cl-性能探讨[J]. 环境工程, 2025, 43(5): 46-56. doi: 10.13205/j.hjgc.202505006
WANG Yue, LIANG Meisheng, CHEN Yuhang, YE Cuiping, CHEN Yichen. Investigation on removal of Cl- from reclaimed water using TiO2 and PANI co-modified ACF electrodes[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(5): 46-56. doi: 10.13205/j.hjgc.202505006
Citation: WANG Yue, LIANG Meisheng, CHEN Yuhang, YE Cuiping, CHEN Yichen. Investigation on removal of Cl- from reclaimed water using TiO2 and PANI co-modified ACF electrodes[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(5): 46-56. doi: 10.13205/j.hjgc.202505006

TiO2和PANI联合改性活性炭纤维电极去除再生水中Cl-性能探讨

doi: 10.13205/j.hjgc.202505006
基金项目: 

太原市国家可持续发展议程创新示范区建设重大专项基金资助项目(04201009309)

详细信息
    作者简介:

    汪玥(1997—),女,硕士研究生在读,主要研究方向为再生水的利用及焦化废水的处理。wyyx6160@163.com.

    通讯作者:

    梁美生(1968—),女,教授,主要研究方向为水、大气污染控制工程。liangmeisheng@tyut.edu.cn

Investigation on removal of Cl- from reclaimed water using TiO2 and PANI co-modified ACF electrodes

  • 摘要: 电吸附技术常用于去除再生水中低浓度的氯离子(Cl-),但未经改性的活性炭纤维(ACF)电极由于其较弱的电吸附能力而导致Cl-去除率较低。采用溶胶-凝胶法结合原位聚合法,制备了二氧化钛(TiO2)和聚苯胺(PANI)修饰的活性炭纤维(ACF)电极,考察改性后的ACF电极在不同条件下对模拟再生水中Cl-的电吸附性能和电极再生性能。结果表明:在极板对数5对、极板间距2 mm、外加电压2 V、Cl-初始浓度120 mg/L的反应条件下,PANI@TiO2/ACF电极对Cl-的去除率提升至96.25%,实际再生水中改性电极对Cl-的去除率可达80.42%。利用X射线衍射(XRD)、扫描电子显微镜(SEM)和傅里叶变换红外光谱(FTIR)等表征分析,探讨了所制备PANI@TiO2/ACF电极的去除Cl-机理。认为TiO2和PANI的修饰增强了ACF电极的物理吸附性能和导电性能,使得改性电极在电吸附过程中的吸附速率和吸附容量都得到了显著提高,这也为电吸附法去除再生水中的Cl-工业化应用提供了数据与理论参考。
  • [1] XIE Z Z,XU K. Ecological process of wastewater regeneration and recycling[J]. Environmental Engineering,2019,42(1):10-24. 谢琤琤,许柯. 污水再生与循环利用的生态化过程[J]. 环境工程,2024,42(1):10-24.
    [2] CHANG D,MA Z,WANG X. Framework of wastewater reclamation and reuse policies(WRRPs)in China:comparative analysis across levels and areas[J]. Environmental Science& Policy,2013,33:41-52.
    [3] REZNIK A,FEINERMAN E,FINKELSHTAIN I,et al. Economic implications of agricultural reuse of treated wastewater in Israel:A statewide long-term perspective[J]. Ecological Economics,2017,135:222-233.
    [4] WANG Z,ZHAO Y,JIANG Q L,et al. Study on adsorption mechanism of enhanced capacitive deion desalination[J]. Environmental Engineering,2018,36(2):69-78. 王志,赵研,姜秋俚,等. 强化电容去离子脱盐的吸附机理研究[J]. 环境工程,2018,36(2):69-78.
    [5] JIA G Z,WANG Z L,ZHANG Y,et al. Study on the design of TiO2/ACF photocatalytic reactor and its degradation of phenol[J]. Environmental Engineering,2009,27(6):38-46. 贾国正,王志良,张勇,等. TiO2/ACF光催化反应器的设计及降解苯酚的研究[J]. 环境工程,2009,27(6):38-46.
    [6] HUANG Z H,YANG Z,KANG F,et al. Carbon electrodes for capacitive deionization[J]. Journal of Materials Chemistry A,2017,5(2):470-496.
    [7] KIM C,KO C J,LEFFELL D J. Cutaneous squamous cell carcinomas of the lower extremity:A distinct subset of squamous cell carcinomas[J]. Journal of the American Academy of Dermatology,2014,70(1):70-74.
    [8] PENG L,CHEN Y,DONG H,et al. Removal of trace As(V)from water with the titanium dioxide/ACF composite electrode[J]. Water,Air,& Soil Pollution,2015,226(7):203-210.
    [9] LI S,ZHANG L,ZHANG L,et al. The in situ construction of three-dimensional core–shell-structured TiO2@PPy/rGO nanocomposites for improved supercapacitor electrode performance[J]. New Journal of Chemistry,2021,45(2):1092-1099.
    [10] ZARRIN N,TAVANAI H,ABDOLMALEKI A,et al. An investigation on the fabrication of conductive polyethylene dioxythiophene(PEDOT)nanofibers through electrospinning[J]. Synthetic Metals,2018,244:143-149.
    [11] TIAN S,ZHANG Z,ZHANG X,et al. Capacitative deionization using commercial activated carbon fiber decorated with polyaniline[J]. J Colloid Interface Sci,2019,537:247-255.
    [12] GHENAATIAN H R,MOUSAVI M F,KAZEMI S H,et al. Electrochemical investigations of self-doped polyaniline nanofibers as a new electroactive material for high performance redox supercapacitor[J]. Synthetic Metals,2009,159(17-18):1717-1722.
    [13] YAN C,ZOU L,SHORT R. Single-walled carbon nanotubes and polyaniline composites for capacitive deionization[J]. Desalination,2012,290:125-129.
    [14] WENG J,WANG S,WANG G,et al. Carbon electrode with cross-linked and charged chitosan binder for enhanced capacitive deionization performance[J]. Desalination,2021,505:1149-1179.
    [15] WANG H,YUAN T,HUANG L,et al. Enhanced chloride removal of phosphorus doping in carbon material for capacitive deionization:Experimental measurement and theoretical calculation[J]. Science of the Total Environment,2020,720:1376-1437.
    [16] LIU S Y,WANG R C,MA C X,et al. Electrochemical Performance of microbial fuel cells modified with graphene oxide and polyaniline[J]. China Environmental Science,2019,39(9):3866-3871. 刘诗彧,王荣昌,马翠香,等. 氧化石墨烯与聚苯胺修饰阴极的微生物燃料电池电化学性能[J]. 中国环境科学,2019,39(9):3866-3871.
    [17] JIA B,ZOU L. Wettability and its influence on graphene nansoheets as electrode material for capacitive deionization[J]. Chemical Physics Letters,2012,548:23-28.
    [18] GAO T,LIU Z,LI H. Heteroatom doping modified hierarchical mesoporous carbon derived from ZIF-8 for capacitive deionization with enhanced salt removal rate[J]. Separation and Purification Technology,2020,231:1-8.
    [19] SRIMUK P,ZEIGER M,JÄCKEL N,et al. Enhanced performance stability of carbon/titania hybrid electrodes during capacitive deionization of oxygen saturated saline water[J]. Electrochimica Acta,2017,224:314-328.
    [20] YANG K L,YIACOUMI S,TSOURIS C. Electrosorption capacitance of nanostructured carbon aerogel obtained by cyclic voltammetry[J]. Journal of Electroanalytical Chemistry,2003,540:159-167.
    [21] HOU C H,HUANG C Y,HU C Y. Application of capacitive deionization technology to the removal of sodium chloride from aqueous solutions[J]. International Journal of Environmental Science and Technology,2013,10(4):753-760.
    [22] JIN Y J,YING Z Z,ZHU J,et al. Determination of chloride ion content in wastewater by silver nitrate titration[J]. Shandong Chemical Industry,2019,49(19):87-89. 金衍健,应忠真,朱剑,等. 硝酸银滴定法测定废水中氯离子含量[J]. 山东化工,2020,49(19):87-89.
    [23] WU P,XIA L,DAI M,et al. Electrosorption of fluoride on TiO2-loaded activated carbon in water[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,502:66-73.
    [24] THOMAS A G,SYRES K L. Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces[J]. Chemical Society Reviews,2012,41(11):4207-4217.
    [25] SEVILLA M,FUERTES A B. The production of carbon materials by hydrothermal carbonization of cellulose[J]. Carbon,2009,47(9):2281-2289.
    [26] YU H,LIU H,YUAN X,et al. Separation of oil-water emulsion and adsorption of Cu(II)on a chitosan-cellulose acetate-TiO2 based membrane[J]. Chemosphere,2019,235:239-247.
    [27] NGUYEN P T D,PHAM V H,SHIN E W,et al. The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites[J]. Chemical Engineering Journal,2011,170(1):226-232.
    [28] KUMARI S,SHEKHAR A,PATHAK D D. Graphene oxide–TiO2 composite:an efficient heterogeneous catalyst for the green synthesis of pyrazoles and pyridines[J]. New Journal of Chemistry,2016,40(6):5053-5060.
    [29] HUANG L,SUN Y,WANG W,et al. Comparative study on characterization of activated carbons prepared by microwave and conventional heating methods and application in removal of oxytetracycline(OTC)[J]. Chemical Engineering Journal,2011,171(3):1446-1453.
    [30] SHI Z,ZHANG C,YANG L F,et al. Study on pollution characteristics of capacitive deion electrode[J]. Environmental Engineering,2018,36(12):109-113. 施周,张超,杨灵芳,等. 电容去离子电极的污染特性研究[J]. 环境工程,2018,36(12):109-113.
    [31] RYOO M W,KIM J H,SEO G. Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution[J]. Affiliation Department of Chemical Technology and the Research Institute for Catalysis,2003,264(2):414-419.
    [32] TAN G,LU S,XU N,et al. Pseudocapacitive behaviors of polypyrrole grafted activated carbon and MnO2 electrodes to enable fast and efficient membrane-free capacitive deionization[J]. Affiliations Department of Civil and Environmental Engineering,2020,54(9):5843-5852.
    [33] FATNASSI M,ES-SOUNI M. Nanoscale phase separation in laponite–polypyrrole nanocomposites. Application to electrodes for energy storage[J]. Institute for Materials& Surface Technology,2015,5(28):21550-21557.
    [34] FU R,ZHANG W L,FENG J T,et al. Study on the low temperature synthesis of anatase titanium dioxide and its adsorption and defluoridation performance[J]. Environmental Engineering,2019,38(2):62-70. 付娆,张文龙,冯江涛,等. 锐钛矿型二氧化钛的低温合成及其吸附除氟性能的研究[J]. 环境工程,2020,38(2):62-70.
    [35] LIANG M,LIU H,YANG C,et al. Enhanced Cl electrosorptive performance of activated carbon fibre via modification by TiO2 and polyaniline[J]. Journal of Environmental Chemical Engineering,2022,10(6):1-7.
    [36] WEI Y,LI X J,LUO Z B,et al. Efficiency and mechanism of fluoride removal by electroadsorption of alumina modified activated carbon fiber[J]. China Environmental Science,2023,43(8):3974-39 82. 魏永,李贤建,罗政博,等. 氧化铝改性活性炭纤维电吸附除氟效能及机理[J]. 中国环境科学,2023,43(8):3974-3982.
  • 加载中
计量
  • 文章访问数:  62
  • HTML全文浏览量:  22
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-03
  • 录用日期:  2024-05-18
  • 修回日期:  2024-05-30
  • 网络出版日期:  2025-09-11

目录

    /

    返回文章
    返回