中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Raoultella planticola/MoS2生物杂合体增强偶氮染料的脱色机理

温娴 侯雅男 李海波 韩懿 张道虹 宋圆圆 郭建博 刘志华 黄聪

温娴, 侯雅男, 李海波, 韩懿, 张道虹, 宋圆圆, 郭建博, 刘志华, 黄聪. Raoultella planticola/MoS2生物杂合体增强偶氮染料的脱色机理[J]. 环境工程, 2025, 43(5): 67-74. doi: 10.13205/j.hjgc.202505008
引用本文: 温娴, 侯雅男, 李海波, 韩懿, 张道虹, 宋圆圆, 郭建博, 刘志华, 黄聪. Raoultella planticola/MoS2生物杂合体增强偶氮染料的脱色机理[J]. 环境工程, 2025, 43(5): 67-74. doi: 10.13205/j.hjgc.202505008
WEN Xian, HOU Yanan, LI Haibo, HAN Yi, ZHANG Daohong, SONG Yuanyuan, GUO Jianbo, LIU Zhihua, HUANG Cong. Decolorization mechanism of azo dyes enhanced by Raoultella Planticola/MoS2 biohybrids[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(5): 67-74. doi: 10.13205/j.hjgc.202505008
Citation: WEN Xian, HOU Yanan, LI Haibo, HAN Yi, ZHANG Daohong, SONG Yuanyuan, GUO Jianbo, LIU Zhihua, HUANG Cong. Decolorization mechanism of azo dyes enhanced by Raoultella Planticola/MoS2 biohybrids[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(5): 67-74. doi: 10.13205/j.hjgc.202505008

Raoultella planticola/MoS2生物杂合体增强偶氮染料的脱色机理

doi: 10.13205/j.hjgc.202505008
基金项目: 

国家自然科学基金项目(52000134);天津市合成生物技术创新能力提升项目(TSBICIP-CXRC-074)

详细信息
    作者简介:

    温娴(1997—),女,硕士研究生,主要研究方向为污水生物处理技术。912713629@qq.com

    通讯作者:

    侯雅男(1989—),女,副教授,主要研究方向为污水生物处理技术。houyn2013@163.com;黄聪(1984—),男,副研究员,主要研究方向为工业废水处理技术。huangc@tib.cas.cn

    侯雅男(1989—),女,副教授,主要研究方向为污水生物处理技术。houyn2013@163.com;黄聪(1984—),男,副研究员,主要研究方向为工业废水处理技术。huangc@tib.cas.cn

Decolorization mechanism of azo dyes enhanced by Raoultella Planticola/MoS2 biohybrids

  • 摘要: 传统偶氮染料的生物脱色通常受到低电子转移速率的限制,可以通过添加具有氧化还原特性的纳米颗粒来形成稳定的生物杂合体来克服该问题。研究构建了具有良好生物相容性的表面沉淀型R.planoultella/MoS2生物杂合体。批量实验表明,杂合0.1~0.7 mmol/L的二硫化钼(MoS2)纳米材料对甲基橙(MO)的生物脱色均有促进作用,其中R.planticola/MoS2(0.5 mmol/L)脱色效果最快。研究发现,R.planticola/MoS2提高了微生物代谢活性和电子传递能力,烟酰胺腺嘌呤二核苷酸(NADH)、三磷酸腺苷(ATP)和电子传递系统活性(ETSA)分别提高了92.08%、42.61%和85.89%。另外,R.planoultella/MoS2生物杂合体增加了胞外聚合物(EPS)的含量,且促进表达了更多的氧化还原性物质和官能团。该研究结果为加速偶氮染料的生物降解提供了新策略,有利于加深对纳米材料与微生物相互作用的理解。
  • [1] CUI M H,LIU W Z,TANG Z E,et al. Recent advancements in azo dye decolorization in bio-electrochemical systems(BESs):Insights into decolorization mechanism and practical application[J]. Water Research,2021,203:117512.
    [2] MAHMOOD F,SHAHID M,HUSSAIN S,et al. Potential plant growth-promoting strain Bacillus sp. SR-2-1/1 decolorized azo dyes through NADH-ubiquinone:oxidoreductase activity[J]. Bioresource Technology,2017,235:176-184.
    [3] VAN DER ZEE F P,CERVANTES F J. Impact and application of electron shuttles on the redox(bio)transformation of contaminants:a review[J]. Biotechnology Advances,2009,27(3):256-277.
    [4] LI J,LI Y,CHEN P,et al. Biological mediated synthesis of reduced graphene oxide(rGO)as a potential electron shuttle for facilitated biological denitrification:insight into the electron transfer process[J]. Journal of Environmental Chemical Engineering,2022,10(3):108225.
    [5] ZHANG Y,LU C,CHEN Z,et al. Multifaceted synergistic electron transfer mechanism for enhancing denitrification by clay minerals[J]. Science of the Total Environment,2022,812:152222.
    [6] ZHANG Y,YANG G,LU C,et al. Insight into the enhancing mechanism of silica nanoparticles on denitrification:effect on electron transfer and microbial metabolism[J]. Chemosphere,2022,300:134601.
    [7] MENG X,YU L,MA C,et al. Three-dimensionally hierarchical MoS₂/graphene architecture for high-performance hydrogen evolution reaction[J]. Nano Energy,2019,61:611-616.
    [8] ZHANG S,DENG Q,SHANGGUAN H,et al. Design and preparation of carbon nitride-based amphiphilic Janus N-doped carbon/MoS₂ nanosheets for interfacial enzyme nanoreactor[J]. ACS Applied Materials& Interfaces,2020,12(10):12227-12237.
    [9] ZHU L,JI J,LIU J,et al. Designing 3D-MoS2 sponge as excellent cocatalysts in advanced oxidation processes for pollutant control[J]. Angewandte Chemie International Edition,2020,59(32):13968-13976.
    [10] BHATT P,PANDEY S C,JOSHI S,et al. Nanobioremediation:A sustainable approach for the removal of toxic pollutants from the environment[J]. Journal of Hazardous Materials,2022,427:128033.
    [11] TIAN S,JIANG Y J,CAO Y,et al. Nanomaterials facilitating conversion efficiency strategies for microbial CO2reduction[J]. Chemistry– A European Journal,2022,28(49):e202202317.
    [12] LIU Y,HUANG X,ZHANG X,et al. The peroxidase-like cleaning strategy for organic fouling of water treatment membranes based on MoS₂ functional layers[J]. Journal of Water Process Engineering,2023,54:103955.
    [13] HE Y,GUO J,SONG Y,et al. Acceleration mechanism of bioavailable Fe(Ⅲ)on Te(Ⅳ)bioreduction of Shewanella oneidensis MR-1:Promotion of electron generation,electron transfer and energy level[J]. Journal of Hazardous Materials,2021,403:123728.
    [14] GUO T,LU C,CHEN Z,et al. Bioinspired facilitation of intrinsically conductive polymers:Mediating intra/extracellular electron transfer and microbial metabolism in denitrification[J]. Chemosphere,2022,295:133865.
    [15] SUN S,HOU Y N,WEI W,et al. Perturbation of clopyralid on bio-denitrification and nitrite accumulation:Long-term performance and biological mechanism[J]. Environmental Science and Ecotechnology,2022,9:100144.
    [16] GUO H,CHEN Z,LU C,et al. Effect and ameliorative mechanisms of polyoxometalates on the denitrification under sulfonamide antibiotics stress[J]. Bioresource Technology,2020,305:123073.
    [17] TAN Y H,YU K,LI J Z,et al. MoS₂@ZnO nano-heterojunctions with enhanced photocatalysis and field emission properties[J]. Journal of Applied Physics,2014,116(8):084307.
    [18] WANG H,QI H,ZHU M,et al. MoS₂ decorated nanocomposite:Fe2O3@MoS2 inhibits the conjugative transfer of antibiotic resistance genes[J]. Ecotoxicology and Environmental Safety,2019,186:109781.
    [19] AN X,CHEN Y,CHEN G,et al. Integrated metagenomic and metaproteomic analyses reveal potential degradation mechanism of azo dye-Direct Black G by thermophilic microflora[J]. Ecotoxicology and Environmental Safety,2020,196:110557.
    [20] WAN R,CHEN Y,ZHENG X,et al. Effect of CO2on NADH production of denitrifying microbes via inhibiting carbon source transport and its metabolism[J]. Science of the Total Environment,2018,627:896-904.
    [21] FENG H J,CHEN L,DING Y C,et al. Mechanism on the microbial salt tolerance enhancement by electrical stimulation[J]. Bioelectrochemistry,2022,146:108206.
    [22] BROBERG A. Effects of heavy metals on electron transport system activity(ETSA)in freshwater sediments[J]. Ecological Bulletins,1983,35:403-418.
    [23] MORI N,DEBELJAK B,ŠKERJANEC M,et al. Modelling the effects of multiple stressors on respiration and microbial biomass in the hyporheic zone using decision trees[J]. Water Research,2019,149:9-20.
    [24] PAN D,SHAO S,ZHONG J,et al. Performance and mechanism of simultaneous nitrification–denitrification and denitrifying phosphorus removal in long-term moving bed biofilm reactor(MBBR)[J]. Bioresource Technology,2022,348:126726.
    [25] TU J,GUO J,LU C,et al. Effect and mechanism of cyclodextrins on nitrate reduction and bio-activity by S. oneidensis MR-1[J]. Bioresource Technology,2020,317:124002.
    [26] TAMILSELVI S,MURUGARAJ R,RAJENDRAN N. Electrochemical impedance spectroscopic studies of titanium and its alloys in saline medium[J]. Materials and Corrosion,2007,58(2):113-120.
    [27] XIAO Y,ZHANG E,ZHANG J,et al. Extracellular polymeric substances are transient media for microbial extracellular electron transfer[J]. Science Advances,2017,3(7):e1700623.
    [28] ZHAO S,LI H,GUO J,et al. Formation of anaerobic granular sludge(AnGS)to treat high-strength perchlorate wastewater via anaerobic baffled reactor(ABR)system:Electron transfer characteristic,bacterial community and positive feedback mechanism[J]. Science of the Total Environment,2022,828:154531.
    [29] ZHUANG Z,YANG G,MAI Q,et al. Physiological potential of extracellular polysaccharide in promoting Geobacter biofilm formation and extracellular electron transfer[J]. Science of the Total Environment,2020,741:140365.
    [30] ZHANG P,XU X Y,ZHANG X L,et al. Nanoparticles-EPS corona increases the accumulation of heavy metals and biotoxicity of nanoparticles[J]. Journal of Hazardous Materials,2021,409:124526.
    [31] ZHU L,QI H Y,KONG Y,et al. Component analysis of extracellular polymeric substances(EPS)during aerobic sludge granulation using FTIR and 3D-EEM technologies[J]. Bioresource Technology,2012,124:455-459.
    [32] MAQBOOL T,QUANG V L,CHO J,et al. Characterizing fluorescent dissolved organic matter in a membrane bioreactor via excitation–emission matrix combined with parallel factor analysis[J]. Bioresource Technology,2016,209:31-39.
    [33] LI M,SU Y,CHEN Y,et al. The effects of fulvic acid on microbial denitrification:promotion of NADH generation,electron transfer,and consumption[J]. Applied Microbiology and Biotechnology,2016,100(12):5607-5618.
    [34] YU J,XIAO K,XU H,et al. Spectroscopic fingerprints profiling the polysaccharide/protein/humic architecture of stratified extracellular polymeric substances(EPS)in activated sludge[J]. Water Research,2023,235:119866.
    [35] BADIREDDY A R,CHELLAM S,GASSMAN P L,et al. Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions[J]. Water Research,2010,44(15):4505-4516.
  • 加载中
计量
  • 文章访问数:  58
  • HTML全文浏览量:  20
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-08
  • 录用日期:  2024-07-12
  • 修回日期:  2024-05-21
  • 网络出版日期:  2025-09-11

目录

    /

    返回文章
    返回