中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于处理挥发性有机物的生物反应器模型研究进展

高曈 李琳 韩云平

高曈, 李琳, 韩云平. 用于处理挥发性有机物的生物反应器模型研究进展[J]. 环境工程, 2025, 43(5): 84-94. doi: 10.13205/j.hjgc.202505010
引用本文: 高曈, 李琳, 韩云平. 用于处理挥发性有机物的生物反应器模型研究进展[J]. 环境工程, 2025, 43(5): 84-94. doi: 10.13205/j.hjgc.202505010
GAO Tong, LI Lin, HAN Yunping. Research progress on bioreactor models for treatment of volatile organic compounds[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(5): 84-94. doi: 10.13205/j.hjgc.202505010
Citation: GAO Tong, LI Lin, HAN Yunping. Research progress on bioreactor models for treatment of volatile organic compounds[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(5): 84-94. doi: 10.13205/j.hjgc.202505010

用于处理挥发性有机物的生物反应器模型研究进展

doi: 10.13205/j.hjgc.202505010
基金项目: 

国家重点研发计划项目(023YFC3707500)

详细信息
    作者简介:

    高曈(1997—),男,博士研究生,主要研究方向为恶臭与VOCs气体高效净化系统与新技术。tonggao_st@rcees.ac.cn

    通讯作者:

    李琳(1966—),女,研究员,主要研究方向为挥发性有机废气及恶臭物质生物转化机制与处理技术研究。leel@rcees.ac.cn。

Research progress on bioreactor models for treatment of volatile organic compounds

  • 摘要: 挥发性有机物(VOCs)是大气中一类重要的污染物。生物净化技术处理大流量、低浓度的VOC,具有反应条件温和、运行费用低、二次污染小的优点,因而被广泛应用。建立适当的反应器模型可以有效地模拟反应器的运行、化学反应以及物质传递过程。早期建立的模型主要用于模拟气体流动、相转移、生物膜内降解和生物生长的生物膜动力学,并且模型的建立方法相对标准,被业内普遍接受和使用。近年来,随着流体力学、数学和计算机等高新技术的发展,新的模型能够模拟更加复杂的工艺条件,同时确保模型的可重复性和稳定性。综述了用于处理VOCs的生物反应器模型的研究进展,重点介绍了经典的生物膜动力学模型、生物反应器计算流体动力学模型,以及人工神经网络模型。阐述了各类模型的基本原理、重要参数、应用条件及研究现状。分析了生物反应器模型研究的不足和未来发展的趋势,以期深入揭示VOC生物转化过程、改进生物处理系统的设计和指导实践提供科学依据。
  • [1] LIU Y,DENG J,XIE S,et al. Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts[J]. Chinese Journal of Catalysis,2016,37(8):1193-1205.
    [2] WANG S,ZHANG J,ZHANG Y,et al. Review on source profiles of volatile organic compounds(VOCs)in typical industries in China[J]. Atmosphere,2023,14(5):878.
    [3] YANG K X,LI L,LIU J X. Review on biological treatment of volatile organic pollutants and odors[J]. Environmental Engineering,2016,34(3):107-111,179. 杨凯雄,李琳,刘俊新. 挥发性有机污染物及恶臭生物处理技术综述[J]. 环境工程,2016,34(3):107-111,179.
    [4] ZHANG J N,XIAO H L,LIU P,et al. Evaluation and prospect of volatile organic compounds treatment technology[J]. Environmental Engineering,2023,41(9):54-60. 张嘉妮,肖海麟,刘鹏,等. 挥发性有机物治理技术评估与展望[J]. 环境工程,2023,41(9):54-60.
    [5] ZHU G,LIU J. Investigation of factors on a fungal biofilter to treat waste gas with ethyl mercaptan[J]. Journal of Environmental Sciences,2004,16(6):898-900.
    [6] LI L,LIU J X. Biological treatment of volatile organic pollutants and odor[J]. Environmental Pollution Treatment Technology and Equipment,2001(5):41-47. 李琳,刘俊新. 挥发性有机污染物与恶臭的生物处理技术及其工艺选择[J]. 环境污染治理技术与设备,2001(5):41-47.
    [7] YANG K,LI L,WANG Y,et al. Effects of substrate fluctuation on the performance,microbial community and metabolic function of a biofilter for gaseous dichloromethane treatment[J]. Chemosphere,2020,249:126185.
    [8] SUN Y,XUE S,LI L,et al. Sulfur dioxide and o-xylene co-treatment in biofilter:performance,bacterial populations and bioaerosols emissions[J]. Journal of Environmental Sciences,2018,69:41-51.
    [9] LI L,LIU J X. Characteristics and influencing factors of fungal degradation of volatile organic pollutants[J]. Environmental Pollution Treatment Technology and Equipment,2003(3):1-5. 李琳,刘俊新. 真菌降解挥发性有机污染物的特性与影响因素[J]. 环境污染治理技术与设备,2003(3):1-5.
    [10] LI L,LIU J X. Removal of xylene from off-gas using a bioreactor containing bacteria and fungi[J]. International Biodeterioration& Biodegradation,2006,58(2):60-64.
    [11] ZHANG J,LI L,LIU J,et al. Temporal variation of microbial population in acclimation and start-up period of a thermophilic desulfurization biofilter[J]. International Biodeterioration& Biodegradation,2016,109:157-164.
    [12] XUE S,CHEN W,DENG M,et al. Effects of moisture content on the performance of a two-stage thermophilic biofilter and choice of irrigation rate[J]. Process Safety and Environmental Protection,2018,113:164-173.
    [13] YANG K,LI L,DING W,et al. A full‐scale thermophilic biofilter in the treatment of sludge drying exhaust:performance,microbial characteristics and bioaerosol emission[J]. Journal of Chemical Technology& Biotechnology,2018,93(8):2216-2225.
    [14] CHEN W H,DENG M J,LUO H,et al. Study on treatment of sludge drying exhaust gas by high temperature biofilter[J]. Environmental Science,2016(1):377-383. 陈文和,邓明佳,罗辉,等. 高温生物滤塔处理污泥干化尾气的研究[J]. 环境科学,2016(1):377-383.
    [15] KRAAKMAN N J R,ROCHA-RIOS J,van LOOSDRECHT M C M. Review of mass transfer aspects for biological gas treatment[J]. Applied Microbiology and Biotechnology,2011,91:873-886.
    [16] RENE E R,ŠPAČKOVÁ R,VEIGA M C,et al. Biofiltration of mixtures of gas-phase styrene and acetone with the fungus Sporothrix variecibatus[J]. Journal of Hazardous Materials,2010,184(1/2/3):204-214.
    [17] DEVINNY J S,RAMESH J. A phenomenological review of biofilter models[J]. Chemical Engineering Journal,2005,113(2/3):187-196.
    [18] OTTENGRAF S P P,van Den OEVER A H C. Kinetics of organic compound removal from waste gases with a biological filter[J]. Biotechnology and Bioengineering,1983,25(12):3089-3102.
    [19] HODGE D S,DEVINNY J S. Modeling removal of air contaminants by biofiltration[J]. Journal of Environmental Engineering,1995,121(1):21-32.
    [20] AMANULLAH M,FAROOQ S,VISWANATHAN S. Modeling and simulation of a biofilter[J]. Industrial& Engineering Chemistry Research,1999,38(7):2765-2774.
    [21] GĄSZCZAK A,BARTELMUS G,BURGHARDT A,et al. Experiments and modelling of a biotrickling filter(BTF)for removal of styrene from airstreams[J]. Journal of Chemical Technology& Biotechnology,2018,93(9):2659-2670.
    [22] SAN-VALERO P,DORADO A D,MARTÍNEZ-SORIA V,et al. Biotrickling filter modeling for styrene abatement. Part 1:model development,calibration and validation on an industrial scale[J]. Chemosphere,2018,191:1066-1074.
    [23] ESHRAGHI M,PARNIAN P,ZAMIR S M,et al. Biofiltration of n-butanol vapor at different operating temperatures:experimental study and mathematical modeling[J]. International Biodeterioration& Biodegradation,2017,119:361-367.
    [24] ANDREASEN R R,LIU D,RAVN S,et al. Air-water mass transfer of sparingly soluble odorous compounds in granular biofilter media[J]. Chemical Engineering Journal,2013,220:431-440.
    [25] FAN L S,LEYVA RAMOS R,WISECARVER K D,et al. Diffusion of phenol through a biofilm grown on activated carbon particles in a draft‐tube three‐phase fluidized‐bed bioreactor[J]. Biotechnology and Bioengineering,1990,35(3):279-286.
    [26] GĄSZCZAK A,BARTELMUS G,ROTKEGEL A. Modeling of the volatile organic compounds biodegradation process in the trickle‐bed bioreactor:analysis of the model parametric sensitivity[J]. AIChE Journal,2021,67(5):e17180.
    [27] STEWART P S. A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms[J]. Biotechnology and Bioengineering,1998,59(3):261-272.
    [28] GĄSZCZAK A,BARTELMUS G,BURGHARDT A,et al. Experiments and modelling of a biotrickling filter(BTF)for removal of styrene from airstreams[J]. Journal of Chemical Technology& Biotechnology,2018,93(9):2659-2670.
    [29] SIVASANKARI M,RAJENDRAN L. Analytical expressions of concentration of VOC and oxygen in steady-state in biofilteration model[J]. Applied Mathematics,2013(2):314-325.
    [30] ZAROOK S M,SHAIKH A A,ANSAR Z. Development,experimental validation and dynamic analysis of a general transient biofilter model[J]. Chemical Engineering Science,1997,52(5):759-773.
    [31] NGUYEN H D,SATO C,WU J,et al. Modeling biofiltration of gas streams containing TEX components[J]. Journal of Environmental Engineering,1997,123(6):615-621.
    [32] ZARE H,NAJAFPOUR G,RAHIMNEJAD M,et al. Biofiltration of ethyl acetate by Pseudomonas putida immobilized on walnut shell[J]. Bioresource Technology,2012,123:419-423.
    [33] OKKERSE W J H,OTTENGRAF S P P,OSINGA‐KUIPERS B,et al. Biomass accumulation and clogging in biotrickling filters for waste gas treatment. Evaluation of a dynamic model using dichloromethane as a model pollutant[J]. Biotechnology and Bioengineering,1999,63(4):418-430.
    [34] MANNUCCI A,MUNZ G,MORI G,et al. Biomass accumulation modelling in a highly loaded biotrickling filter for hydrogen sulphide removal[J]. Chemosphere,2012,88(6):712-717.
    [35] DUMONT E,WOUDBERG S,Van JAARSVELD J. Assessment of porosity and biofilm thickness in packed beds using porous media models[J]. Powder Technology,2016,303:76-89.
    [36] FERDOWSI M,RAMIREZ A A,JONES J P,et al. Elimination of mass transfer and kinetic limited organic pollutants in biofilters:a review[J]. International Biodeterioration& Biodegradation,2017,119:336-348.
    [37] NIKIEMA J,BIBEAU L,LAVOIE J,et al. Biofiltration of methane:an experimental study[J]. Chemical Engineering Journal,2005,113(2/3):111-117.
    [38] ESTRADA J M,LEBRERO R,QUIJANO G,et al. Methane abatement in a gas-recycling biotrickling filter:Evaluating innovative operational strategies to overcome mass transfer limitations[J]. Chemical Engineering Journal,2014,253:385-393.
    [39] MONTES M,VEIGA M C,KENNES C. Influence of polymeric materials on the performance of a mesophilic biotrickling filter treating an α‐pinene contaminated gas stream[J]. Journal of Chemical Technology& Biotechnology,2015,90(4):658-668.
    [40] NIELSEN D R,DAUGULIS A J,MCLELLAN P J. Transient performance of a two-phase partitioning bioscrubber treating a benzene-contaminated gas stream[J]. Environmental science& technology,2005,39(22):8971-8977.
    [41] RAMIREZ A A,JONES J P,HEITZ M. Control of methanol vapours in a biotrickling filter:performance analysis and experimental determination of partition coefficient[J]. Bioresource Technology,2009,100(4):1573-1581.
    [42] MOROTTI K,RAMIREZ A A,JONES J P,et al. Analysis and comparison of biotreatment of air polluted with ethanol using biofiltration and biotrickling filtration[J]. Environmental Technology,2011,32(16):1967-1973.
    [43] AVALOS RAMIREZ A,JONES J P,HEITZ M. Biotrickling filtration of air contaminated with ethanol[J]. Journal of Chemical Technology& Biotechnology,2007,82(2):149-157.
    [44] LÓPEZ M E,BOGER Z,RENE E R,et al. Transient-state studies and neural modeling of the removal of a gas-phase pollutant mixture in a biotrickling filter[J]. Journal of Hazardous Materials,2014,269:45-55.
    [45] YE G,SUN Y,ZHOU X,et al. Method for generating pore networks in porous particles of arbitrary shape,and its application to catalytic hydrogenation of benzene[J]. Chemical Engineering Journal,2017,329:56-65.
    [46] HU J,ZHENG J L,WU Y X,et al. Study on biofilm phase characteristics of toluene waste gas degraded by biodrip filter[J]. Environmental Science,2012,33(9):2979-2986. 胡俊,郑江玲,吴越新,等. 生物滴滤塔降解甲苯废气长期运行生物膜相特性研究[J]. 环境科学,2012,33(9):2979-2986.
    [47] MORENO-CASAS P A,SCOTT F,DELPIANO J,et al. Computational tomography and CFD simulation of a biofilter treating a toluene,formaldehyde and benzo[α] pyrene vapor mixture[J]. Chemosphere,2020,240:124924.
    [48] MATHUR A K,BALA S,MAJUMDER C. Modelling and computational fluid dynamic behaviour of a biofilter treating benzene[J]. Bioresource Technology,2012,125:200-207.
    [49] DORADO A D,BAQUERIZO G,MAESTRE J P,et al. Modeling of a bacterial and fungal biofilter applied to toluene abatement:kinetic parameters estimation and model validation[J]. Chemical Engineering Journal,2008,140(1/2/3):52-61.
    [50] PRADES L,DORADO A D,CLIMENT J,et al. CFD modeling of a fixed-bed biofilm reactor coupling hydrodynamics and biokinetics[J]. Chemical Engineering Journal,2017,313:680-692.
    [51] KIM S,DESHUSSES M A. Development and experimental validation of a conceptual model for biotrickling filtration of H2S[J]. Environ Prog,2003. DOI: 10.1002/ep.670220214.
    [52] MORENO-CASAS P A,SCOTT F,DELPIANO J,et al. Mechanistic description of convective gas-liquid mass transfer in biotrickling filters using CFD modeling[J]. Environmental Science& Technology,2019,54(1):419-426.
    [53] ROLLAND du ROSCOAT S,IVANKOVIC T,LENOIR N,et al. First visualisation of bacterial biofilms in 3D porous media with neutron microtomography without contrast agent[J]. Journal of Microscopy,2022,285(1):20-28.
    [54] MORENO-CASAS P A,SCOTT F,DELPIANO J,et al. Computational tomography and CFD simulation of a biofilter treating a toluene,formaldehyde and benzo[α] pyrene vapor mixture[J]. Chemosphere,2020,240:124924.
    [55] XIE L,ZHU J,RAMIREZ M,et al. CFD-single particle modeling and simulation of the removal of H2S in a packed-bed bioreactor[J]. Journal of Environmental Chemical Engineering,2021,9(4):105692.
    [56] CHEN Y Q,XIE L,CAI W F,et al. Pilot-scale study using biotrickling filter to remove H2S from sewage lift station:experiment and CFD simulation[J]. Biochemical Engineering Journal,2019,144:177-184.
    [57] SPIGNO G,DE FAVERI D M. Modeling of a vapor‐phase fungi bioreactor for the abatement of hexane:Fluid dynamics and kinetic aspects[J]. Biotechnology and Bioengineering,2005,89(3):319-328.
    [58] CARREÑO-LÓPEZ F,MORENO-CASAS P A,SCOTT F,et al. A convenient method to validate the gas flow of a CFD-CT simulation applied on a packed bed used in gas biofiltration through residence time distributions[J]. Chemical Engineering Journal,2023,451:138795.
    [59] LIU Z,DONG D,XI J. Development of a CFD model indicating the quantitative relationship among reactor dimension,bed flow unevenness,and performance for VOCs biofilters[J]. Journal of the Air& Waste Management Association,2023,73(11):865-876.
    [60] GÜÇLÜ D,DURSUN S. Amelioration of carbon removal prediction for an activated sludge process using an artificial neural network(ANN)[J]. CLEAN-Soil,Air,Water,2008,36(9):781-787.
    [61] HAIDER M A,PAKSHIRAJAN K,SINGH A,et al. Artificial neural network-genetic algorithm approach to optimize media constituents for enhancing lipase production by a soil microorganism[J]. Applied Biochemistry and Biotechnology,2008,144:225-235.
    [62] KŮRKOVÁ V. Kolmogorov's theorem and multilayer neural networks[J]. Neural Networks,1992,5(3):501-506.
    [63] RUMELHART D E,HINTON G E,WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature,1986,323(6088):533-536.
    [64] RENE E R,VEIGA M C,KENNES C. Experimental and neural model analysis of styrene removal from polluted air in a biofilter[J]. Journal of Chemical Technology& Biotechnology,2009,84(7):941-948.
    [65] RENE E R,LÓPEZ M E,VEIGA M C,et al. Neural network models for biological waste-gas treatment systems[J]. New Biotechnology,2011,29(1):56-73.
    [66] RENE E R,VEIGA M C,KENNES C. Performance evaluation and neural modeling of gas-phase styrene removal in one-and two-liquid phase suspended-growth bioreactors[J]. Industrial& Engineering Chemistry Research,2011,50(10):6485-6495.
    [67] BASKARAN D,RAJAMANICKAM R,PAKSHIRAJAN K. Experimental studies and neural network modeling of the removal of trichloroethylene vapor in a biofilter[J]. Journal of Environmental Management,2019,250:109385.
    [68] BASKARAN D,SINHAROY A,PAKSHIRAJAN K,et al. Gas-phase trichloroethylene removal by Rhodococcus opacus using an airlift bioreactor and its modeling by artificial neural network[J]. Chemosphere,2020,247:125806.
    [69] BASKARAN D,SINHAROY A,PAUL T,et al. Performance evaluation and neural network modeling of trichloroethylene removal using a continuously operated two-phase partitioning bioreactor[J]. Environmental Technology& Innovation,2020,17:100568.
    [70] BOOJARI M A,ZAMIR S M,RENE E R,et al. Performance assessment of gas-phase toluene removal in one-and two-liquid phase biotrickling filters using artificial neural networks[J]. Chemosphere,2019,234:388-394.
    [71] SAKHAEI A,ZAMIR S M,RENE E R,et al. Neural network-based performance assessment of one-and two-liquid phase biotrickling filters for the removal of a waste-gas mixture containing methanol,α-pinene,and hydrogen sulfide[J]. Environmental Research,2023,237:116978.
    [72] MOSAVI A,SHAMSHIRBAND S,SALWANA E,et al. Prediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learning[J]. Engineering Applications of Computational Fluid Mechanics,2019,13(1):482-492.
  • 加载中
计量
  • 文章访问数:  67
  • HTML全文浏览量:  22
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-26
  • 录用日期:  2024-05-18
  • 修回日期:  2024-04-12
  • 网络出版日期:  2025-09-11

目录

    /

    返回文章
    返回