中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西部地区工业碳排放达峰预测与减排潜力分析

邹艳 李佳佳 王淑平

邹艳, 李佳佳, 王淑平. 西部地区工业碳排放达峰预测与减排潜力分析[J]. 环境工程, 2025, 43(5): 199-206. doi: 10.13205/j.hjgc.202505022
引用本文: 邹艳, 李佳佳, 王淑平. 西部地区工业碳排放达峰预测与减排潜力分析[J]. 环境工程, 2025, 43(5): 199-206. doi: 10.13205/j.hjgc.202505022
ZOU Yan, LI Jiajia, WANG Shuping. Peak prediction and emission-reduction potential analysis for industrial carbon emissions in Western China[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(5): 199-206. doi: 10.13205/j.hjgc.202505022
Citation: ZOU Yan, LI Jiajia, WANG Shuping. Peak prediction and emission-reduction potential analysis for industrial carbon emissions in Western China[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(5): 199-206. doi: 10.13205/j.hjgc.202505022

西部地区工业碳排放达峰预测与减排潜力分析

doi: 10.13205/j.hjgc.202505022
基金项目: 

教育部人文社会科学研究项目“西部地区工业碳达峰情景预测及达峰路径研究”(23XJA630006);重庆市自然科学基金项目“非线性多变量动态灰色预测建模理论与方法研究”(CSTB2023NSCQ-MSX0380);重庆师范大学研究生科研创新项目“融合多源信息的中国碳市场碳价时滞组合预测研究”(YKC24016)

详细信息
    作者简介:

    邹艳(1974—),女,教授,主要研究方向为预测与决策、智能计算、技术创新管理。zouyan@cqnu.edu.cn

    通讯作者:

    王淑平(1999—),女,硕士研究生,主要研究方向为预测与决策。wsp17755698041@163.com

Peak prediction and emission-reduction potential analysis for industrial carbon emissions in Western China

  • 摘要: 西部地区作为中国工业发展的重点区域,科学预测其工业碳达峰情况有利于制定符合区域特点的减排政策。提出一种符合中国实际的碳排放核算体系,对西部11个省级行政区工业碳排放量进行合理测算;在此基础上构建粒子群-小波神经网络模型,以预测西部地区2020—2030年工业碳排放总量;结合最终预测结果分析西部地区工业碳达峰情况及减排潜力。结果显示:1)自然达峰情景下,广西、云南、陕西、甘肃、新疆、重庆、青海、宁夏有望2030年前实现达峰,内蒙古、四川、贵州在实现碳达峰目标方面可能存在一定困难;2)碳排放强度方面,除内蒙古外,西部其余省级行政区的工业行业均能实现碳排放强度较2005年下降60%~65%的目标,且广西、重庆、陕西、贵州、云南的碳排放下降幅度可达到90%以上;3)碳减排潜力方面,西部地区整体减排潜力较大,其中内蒙古、青海、宁夏是西部地区中减排潜力最大的3个省级行政区。最后结合西部地区工业行业特点,提出合理调整减排重点区域、优化能源结构、制定动态达峰控制策略等建议。
  • [1] HUO T F,LI X H,CAI W J,et al. Exploring the impact of urbanization on urban building carbon emissions in China:Evidence from a provincial panel data model[J]. Sustainable Cities and Society,2020,56.
    [2] HU J B,ZHAO K,YANG Y H. Prediction and influencing factors of China's industrial carbon emission peak:an empirical analysis based on the BP-LSTM neural network model[J]. Guizhou Social Sciences,2021(9):135-146. 胡剑波,赵魁,杨苑翰. 中国工业碳排放达峰预测及控制因素研究:基于BP-LSTM神经网络模型的实证分析[J]. 贵州社会科学,2021(9):135-146.
    [3] LIU T W,BIAN X Y,WU S,et al. Overview and prospect of carbon emission accounting in electric power systems[J]. Power System Protection and Control,2024,52(4):176-187. 刘天蔚,边晓燕,吴珊,等. 电力系统碳排放核算综述与展望[J]. 电力系统保护与控制,2024,52(4):176-187.
    [4] CRESPO A M F,WANG C,CRESPO T M F,et al. Learning framework for carbon emissions predictions incorporating a RReliefF driven features selection and an iterative neural network architecture improvement[J]. SN Applied Sciences,2021,3(4):1-14.
    [5] ZHAO J J,KOU L,WANG H T,et al. Carbon emission prediction model and analysis in the yellow river basin based on a machine learning method[J]. Sustainability,2022,14(10):6098.
    [6] LIU Z,WANG Z L,YUAN C J. Impact of independent technological innovation on industrial carbon emissions and trend prediction from the perspective of structure[J]. China Population,Resources and Environment,2022,32(7):12-21. 刘朝,王梓林,原慈佳. 结构视域下自主技术创新对工业碳排放的影响及趋势预测[J]. 中国人口·资源与环境,2022,32(7):12-21.
    [7] LIAN Y Q,SUN D H,SHI S X. Carbon peak prediction in fujian province based on combined STIRPAT and CNN-LSTM models[J/OL]. Environmental Science:1-15.(2024-04-28)[ 2024-08-01] https://link.cnki.net/urlid/11.1895.X.20240428.1322.002. 连艳琼,苏墩煌,施生旭. 基于STIRPAT和CNN-LSTM组合模型的福建省碳达峰预测[J/OL]. 环境科学:1-15.(2024-04-28)[ 2024-08-01] https://link.cnki.net/urlid/11.1895.X.20240428.1322.002.
    [8] LIU H T,HU D W. Construction and analysis of machine learning based transportation carbon emission prediction model[J]. Environmental Science,2024,45(6):3421-3432. 刘慧甜,胡大伟. 基于机器学习的交通碳排放预测模型构建与分析[J]. 环境科学,2024,45(6):3421-3432.
    [9] ZHANG G M,WANG T,LOU Y Y,et al. Research on China’s provincial carbon emission peak path based on a LSTM Neural network approach[J/OL]. Chinese Journal of Management Science:1-12.(2023-11-15)[ 2024-08-01] https://doi.org/10.16381/j.cnki.issn1003-207x.2022.0097. 章高敏,王腾,娄渊雨,等. 基于LSTM神经网络的中国省级碳达峰路径分析[J/OL]. 中国管理科学:1-12.(2023-11-15)[ 2024-08-01] https://doi.org/10.16381/j.cnki.issn1003-207x.2022.0097.
    [10] SUN Y Z,SHU Q,JING C R,et al. Regional transport carbon emission forecasting and peak carbon pathway planning in China[J/OL]. Environmental Science:1-18.(2024-07-15)[ 2024-08-01] https://doi.org/10.13227/j.hjkx.202403152. 宋永朝,舒秦,金程容,等. 中国区域交通碳排放预测与碳达峰路径规划[J/OL]. 环境科学:1-18.(2024-07-15)[ 2024-08-01] https://doi.org/10.13227/j.hjkx.202403152.
    [11] WANG Q R,WANG J J,ZHU C F,et al. Carbon emission prediction of transportation industry based on VMD and SSA-LSSVM[J]. Environmental Engineering,2023,41(10):124-132. 王庆荣,王俊杰,朱昌锋,等. 融合VMD和SSA-LSSVM的交通运输业碳排放预测研究[J]. 环境工程,2023,41(10):124-132.
    [12] NIE W G,AO O,DUAN H M. A novel grey prediction model with a feedforward neural network based on a carbon emission dynamic evolution system and its application[J]. Environmental Science and Pollution Research,2023,30(8):20704-20720.
    [13] HE X Q,SONG Y X,YU F M,et al. Applications of fractional order logistic grey models for carbon emission forecasting[J]. Fractal and Fractional,2024,8(3):123.
    [14] DUAN H M,WANG D,PANG X Y,et al. A novel forecasting approach based on multi-kernel nonlinear multivariable grey model:a case report[J]. Journal of Cleaner Production,2020,260:121169.
    [15] LIU J B,YUAN X Y,LEE C C. Prediction of carbon emissions in China's construction industry using an improved grey prediction model[J]. Science of the Total Environment,2024,938:167892..
    [16] ZHANG Y D,LI X,ZHANG Y W. A novel integrated optimization model for carbon emission prediction:a case study on the group of 20[J]. Journal of Environmental Management,2023,344:118439.
    [17] ZHANG X S,WEI Z Z,CHEN Z Z,et al. Prediction of industrial carbon emissions in Shaanxi province based on LASSO-GWO-KELM model[J]. Environmental Engineering,2023,41(10):141-149. 张新生,魏志臻,陈章政,等. 基于LASSO-GWO-KELM的工业碳排放预测方法研究[J]. 环境工程,2023,41(10):141-149.
    [18] WEN S J,LIU Y Y,TANG F,et al. Driving forces and mitigation potential of CO2 emissions for ship transportation in Guangdong Province[J]. Environmental Science,2024,45(1):115-122. 翁淑娟,刘颍颖,唐凤,等. 广东省船舶二氧化碳排放驱动因素与减排潜力[J]. 环境科学,2024,45(1):115-122.
    [19] LEI Y T,ZHANG X,SUN J J. Estimation and prediction of carbon emission reduction potential in China's manufacturing sector[J]. Statistics and decision,2023,39(4):168-173. 雷玉桃,张萱,孙菁靖. 中国制造业部门碳减排潜力估算及预测[J]. 统计与决策,2023,39(4):168-173.
    [20] GAO G L,WEN Y,WANG L,et al. Study on carbon peak of urban clusters based on analysis of influencing factors of carbon emissions[J]. Economic Management,2023,45(2):39-58. 高国力,文扬,王丽,等. 基于碳排放影响因素的城市群碳达峰研究[J]. 经济管理,2023,45(2):39-58.
    [21] GAO Y,FU Z W,ZHANG Z M. Analysis and prediction of carbon emission reduction potential of marine fishery in China[J]. Journal of Guangdong Ocean University,2022,42(3):39-44. 高源,付忠伟,张兆敏. 中国海洋渔业碳排放减排潜力及预测[J]. 广东海洋大学学报,2022,42(3):39-44.
    [22] ZHANG Q H A B. Wavelet networks[J]. IEEE Trans on Neural Networks,1992,3(5):889-898.
    [23] Kreinovich V,Sirisaengtaksin O,Cabrera S. Wavelet neural networks are asymptotically optimal approximators for functions of one variable[J]. Proceeding of IEEE ICNN,1994,1:299-304.
    [24] ZHANG H,WANG X M,CAO J R,et al. A multivariate short-term traffic flow forecasting method based on wavelet analysis and seasonal time series[J]. Applied Intelligence,2018,48(10):3827-3838.
    [25] YIN L S,TANG S Q,LI S,et al. Traffic flow prediction based on hybrid model of auto-regressive integrated moving average and genetic particle swarm optimization wavelet neural network[J]. Journal of Electronics& Information Technology,2019,41(9):2273-2279. 殷礼胜,唐圣期,李胜,等. 基于整合移动平均自回归和遗传粒子群优化小波神经网络组合模型的交通流预测[J]. 电子与信息学报,2019,41(9):2273-2279.
    [26] CHEN Z M,WU S M,MA W B,et al. Driving forces of carbon dioxide emission for China’s cities:empirical analysis based on extended STIRPAT Mode[J]. China Population,Resource and Environment,2018,28(10):45-54. 陈占明,吴施美,马文博,等. 中国地级以上城市二氧化碳排放的影响因素分析:基于扩展的STIRPAT模型[J]. 中国人口·资源与环境,2018,28(10):45-54.
    [27] JIN P H,ZHAO C Y,AI Y L,et al. Fault detection of photovoltaic array based on particle swarm optimization wavelet neural network[J]. Engineering Journal of Wuhan University,2021,54(9):860-865. 荆鹏辉,韩朝阳,艾永乐,等. 基于粒子群优化小波神经网络的光伏阵列故障检测[J]. 武汉大学学报(工学版),2021,54(9):860-865.
    [28] LIANG C H,LIU X B,GU Z P,et al. Multi wavelet neighbor coefficient method for hybrid particle swarm optimization and its application[J]. Computer Integrated Manufacturing Systems,2022,28(3):843-852. 梁春辉,刘晓波,辜振谱,等. 混合粒子群优化的多小波相邻系数法及其应用[J]. 计算机集成制造系统,2022,28(3):843-852.
    [29] LI M S,ZHANG J H,LUO H J,et al. Sulphur dioxide reduction and potential in China[J]. Chinese Geographical Science,2011,31(9):1065-1071. 李名升,张建辉,罗海江,等. 中国二氧化硫减排分析及减排潜力[J]. 地理科学,2011,31(9):1065-1071.
    [30] LI Z X,SUN M. Dynamic effects of high-tech products import and innovation on productivity[J]. Statistics and Decision,2017(14):101-104. 李志学,孙敏. 我国各省区碳退耦指数与减排潜力的测算[J]. 统计与决策,2017(14):101-104.
  • 加载中
计量
  • 文章访问数:  77
  • HTML全文浏览量:  19
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-17
  • 录用日期:  2024-08-15
  • 修回日期:  2024-07-23
  • 网络出版日期:  2025-09-11

目录

    /

    返回文章
    返回