中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

污泥发酵产酸强化技术与应用潜力

冯臣 张含 高金华 王佳伟 文洋 任征然 李相昆

冯臣, 张含, 高金华, 王佳伟, 文洋, 任征然, 李相昆. 污泥发酵产酸强化技术与应用潜力[J]. 环境工程, 2025, 43(6): 51-64. doi: 10.13205/j.hjgc.202506006
引用本文: 冯臣, 张含, 高金华, 王佳伟, 文洋, 任征然, 李相昆. 污泥发酵产酸强化技术与应用潜力[J]. 环境工程, 2025, 43(6): 51-64. doi: 10.13205/j.hjgc.202506006
FENG Chen, ZHANG Han, GAO Jinhua, WANG Jiawei, WEN Yang, REN Zhengran, LI Xiangkun. Acids production enhancement technology for sludge fermentation and its application potential[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(6): 51-64. doi: 10.13205/j.hjgc.202506006
Citation: FENG Chen, ZHANG Han, GAO Jinhua, WANG Jiawei, WEN Yang, REN Zhengran, LI Xiangkun. Acids production enhancement technology for sludge fermentation and its application potential[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(6): 51-64. doi: 10.13205/j.hjgc.202506006

污泥发酵产酸强化技术与应用潜力

doi: 10.13205/j.hjgc.202506006
基金项目: 

国家自然科学基金项目(52370071)

详细信息
    作者简介:

    冯臣(2000—),男,硕士研究生,主要研究方向为污泥处理与资源化利用。fong2chen2@163.com

    通讯作者:

    李相昆(1975—),男,教授,主要研究方向为污泥处理与资源化利用。xkli312@163.com

Acids production enhancement technology for sludge fermentation and its application potential

  • 摘要: 污泥厌氧发酵生产挥发性脂肪酸(VFAs)是实现污泥资源化的一种极具潜力的途径,VFAs不仅是多种工业产品的前体物质,而且在污水生物处理过程中可作为补充碳源。然而,其应用推广受限于产酸量低、产酸过程不稳定等因素。因此,探究提升污泥发酵产酸效果的策略及其发酵液的应用潜力,已成为研究领域的热点问题。已有研究主要集中于探讨污泥发酵产酸的机理及其影响因素,对污泥强化产酸方法的系统归纳以及发酵液中富含的VFAs后续应用的研究尚显不足。概述了污泥厌氧发酵产酸的机理,并对4种常见的污泥强化产酸策略——预处理、膜技术、碱性发酵、共发酵的优势与局限性进行了总结。进一步介绍在上述强化策略作用下,污泥发酵液的应用途径,包括作为合成聚羟基脂肪酸酯(PHAs)、中链脂肪酸(MCFAs)及生物能源的原料,微生物燃料电池(MFC)的制备,及作为污水脱氮除磷的补充碳源。指出了现有污泥强化产酸技术与发酵液应用领域所面临的挑战与不足,并对未来的研究方向进行了展望,以期为提高污泥资源回收率与发酵产物利用率提供参考。
  • [1] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Statistical yearbook of urban construction in China(2022)[M]. Beijing:China Statistics Press,2023. 中华人民共和国住房和城乡建设部. 中国城市建设统计年鉴 2022[M]. 北京:中国统计出版社,2023.
    [2] YU D H,WU F,HE J G,et al. Tuned layered double hydroxide-based catalysts inducing singlet oxygen evolution:Reactive oxygen species evolution mechanism exploration,norfloxacin degradation,and catalysts screen based on machine learning[J]. Applied Catalysis B:Environmental,2023,320.
    [3] SHENG L,LIU J Y,ZHANG C,et al. Pretreating anaerobic fermentation liquid with calcium addition to improve short-chain fatty acids extraction via in situ synthesis of layered double hydroxides[J]. Bioresource Technology,2019,271:190-195.
    [4] LI X T,YANG L,HAN P,et al. Biofortification on acid production by anaerobic fermentation of sludge:a review[J]. China Biotechnology,2022,42(11):155-162. 李夏桐,杨林,韩盼,等. 生物强化污泥厌氧发酵产酸研究进展[J]. 中国生物工程杂志,2022,42(11):155-162.
    [5] MA Y Y,WU Y,WANG P C,et al. Research progress on anaerobic co-fermentation of waste-activated sludge to produce acid under the coal of low carbon[J]. Environmental Engineering,2024,42(1):102-109. 马元元,吴瑒,王朴淳,等. 低碳背景下剩余污泥厌氧共发酵产酸研究进展[J]. 环境工程,2024,42(1):102-109.
    [6] MERVE A,ISAAC O,ELZBIETA P,et al. Bio-based volatile fatty acid production and recovery from waste streams:Current status and future challenges[J]. Bioresource Technology,2018,268:773-786.
    [7] ZHOU M M,YAN B H,WANG J,et al. Enhanced volatile fatty acids production from anaerobic fermentation of food waste:A mini-review focusing on acidogenic metabolic pathways[J]. Bioresource Technology,2018,248:68-78.
    [8] LI X T,YANG L,HAN P,et al. Biofortification on acid production by anaerobic fermentation of sludge:a review[J]. China Biotechnology,2022,42(11):155-162.
    [9] SWARNIMA A,DONGMIN Y,AMIR M,et al. A glimpse of the world of volatile fatty acids production and application:a review[J]. Bioengineered,2022,13(1):1249-1275.
    [10] WANG Z Y,LI X,LIU H,et al. Bioproduction and applications of short-chain fatty acids from secondary sludge anaerobic fermentation:A critical review[J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS,2023,183.
    [11] YAO C,LIU H,LUO X D,et al. Mechanism and microbial community analysis of anaerobic acid production(VFAs)by low-carbon sludge in South China at alkaline condition[J]. CIESC Journal,2016,67(4):1565 ±1571. 姚创,刘晖,罗晓栋,等. 华南地区低有机质污泥碱性厌氧产酸(VFAs)性能机理与菌群分析[J]. 化工学报,2016,67(4):1565 ±1571.
    [12] MEEGODA J,LI B,PATEL K,et al. A review of the processes,parameters,and optimization of anaerobic digestion[J]. International Journal of Environmental Research & Public Health,2018,15(10):2224.
    [13] YE H M,LIU Z W,TIAN S. Research progress on acid production technology of sludge anaerobic fermentation[J]. Applied Chemical Industry,2023,52(2):588-594. 叶红梅,刘祖文,田帅. 污泥厌氧发酵产酸技术研究进展[J]. 应用化工,2023,52(2):588-594.
    [14] LI L G,Wang Y Y,LI Y,et al. Effects of substrate concentration,hydraulic retention time and headspace pressure on acid production of protein by anaerobic fermentation[J]. Bioresource Technology,2019,283:106-111.
    [15] WANG L,PAN L. Research progress on sludge anaerobic fermentation technology for acid production[J]. Modern Chemical Industry,2023,43(7):68-72,78. 王琳,潘雷. 污泥厌氧发酵产酸技术的研究进展[J]. 现代化工,2023,43(7):68-72,78.
    [16] XIANG Z Z,HUANG X,CHEN H F,et al. Insights into thermal hydrolysis pretreatment temperature for enhancing volatile fatty acids production from sludge fermentation:Performance and mechanism[J]. Bioresource Technology,2023,379:129032.
    [17] KE Y H,ZENG Y F,LI H F,et al. Effects of pretreated methods on volatile fatty acids production through sludge anaerobic fermentation[J]. Environmental Engineering,2020,38(8):21-26,12. 柯壹红,曾艺芳,李华藩,等. 不同预处理方法对污泥厌氧发酵产酸效果的影响[J]. 环境工程,2020,38(8):21-26,12.
    [18] XIN X D,SHE Y C,HONG J M. Insights into microbial interaction profiles contributing to volatile fatty acids production via acidogenic fermentation of waste activated sludge assisted by calcium oxide pretreatment[J]. Bioresource technology,2021,320:124287.
    [19] HASSARD F,BIDDLE J,HARNETT R,et al. Microbial extracellular enzyme activity affects performance in a full-scale modified activated sludge process[J]. Science of the Total Environment,2018,625(1):1527-1534.
    [20] LUO J Y,LI Y,LI Y B,et al. Waste-to-energy:Cellulase induced waste activated sludge and paper waste co-fermentation for efficient volatile fatty acids production and underlying mechanisms[J]. Bioresource technology,2021,341:125771.
    [21] ZHU R,ZHAO S S,JU C L,et al. Ultrasonic-assisted hypochlorite activation accelerated volatile fatty acids production during sewage sludge fermentation:Critical insights on solubilization/hydrolysis stages and microbial traits[J]. Bioresource Technology,2023,383:129233.
    [22] WANG Y F,WANG X M,ZHENG K X,et al. Ultrasound-sodium percarbonate effectively promotes short-chain carboxylic acids production from sewage sludge through anaerobic fermentation[J]. Bioresource Technology,2022,364:128024.
    [23] ZHOU Y Q,HUANG X,MA S L,et al. Thermo-alkaline pretreatment of excess sludge:Effects of temperature on volatile fatty acids accumulation and microbial community[J]. Journal of Environmental Management,2023,342:118244.
    [24] PANG H L,JIAO Q Q,HE J G,et al. Enhanced short-chain fatty acids production through a short-term anaerobic fermentation of waste activated sludge:Synergistic pretreatment of alkali and alkaline hydrolase blend[J]. Journal of Cleaner Production,2022,342:130954.
    [25] ZHANG P F,ZHOU Y,PAN X L,et al. Enhanced acidogenic fermentation from Al-rich waste activated sludge by combining lysozyme and sodium citrate pretreatment:Perspectives of Al stabilization and enzyme activity[J]. Science of the TOTAL ENVIRONMENt,2023,864:161108.
    [26] ZHOU W Y,FANG Q,DING W X,et al. Enhancement of waste activated sludge hydrolysis and decomposition by combined free nitrous acid and sodium citrate pretreatment[J]. Journal of Water Process Engineering,2023,54:103945.
    [27] LIU Y,ZHAO J W,LI X M,et al. Synergistic effect of free nitrite acid integrated with biosurfactant alkyl polyglucose on sludge anaerobic fermentation[J]. Waste Management,2018,78:310-317.
    [28] YUAN Q,SPARLING R,OLESZKIEWICZ J A. VFA generation from waste activated sludge:Effect of temperature and mixing[J]. Chemosphere,2011,82(4):603-607.
    [29] MA H J,HUANG S,LIU H,et al. Efficiencies and characteristics of self-forming dynamic membrane in separating fermented sludge for acid production[J]. China Environmental Science,2015,(6):1780-1785. 马惠君,黄帅,刘和,等. 自生动态膜分离厌氧产酸污泥效果与特征研究[J]. 中国环境科学,2015,(6):1780-1785.
    [30] GAO X L,ZHANG Q Q,ZHU H T. High rejection rate of polysaccharides by microfiltration benefits Christensenella minuta and acetic acid production in an anaerobic membrane bioreactor for sludge fermentation[J]. Bioresource Technology,2019,282:197-201.
    [31] ZHANG M J,PENG W,CHEN J R,et al. A new insight into membrane fouling mechanism in submerged membrane bioreactor:Osmotic pressure during cake layer filtration[J]. Water Resreach,2013,47(8):2777-2786.
    [32] HUANG J H,CHEN K,XIA X D,et al. Long-term performance on volatile fatty acids production improved in a kitchen wastewater fermenter by co-fermentation of sludge and membrane separation[J]. Chemosphere,2023,335:139049.
    [33] LIU H B,WANG L,ZHANG X D,et al. A viable approach for commercial VFAs production from sludge:liquid fermentation in anaerobic dynamic membrane reactor[J]. Journal of hazardous materials,2019,365:912-920.
    [34] ZHANG Q Q,WU L Y,HUANG J H,et al. Recovering short-chain fatty acids from waste sludge via biocarriers and microfiltration enhanced anaerobic fermentation[J]. Resources,Conservation and Recycling,2022,182:106342.
    [35] TAO B,PASSANHA P,KUMI P,et al. Recovery and concentration of thermally hydrolysed waste activated sludge derived volatile fatty acids and nutrients by microfiltration,electrodialysis and struvite precipitation for polyhydroxyalkanoates production[J]. Chemical Engineering Journal,2016,295,11-19.
    [36] YUAN Y Y,HU X Y,CHEN H B,et al. Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge[J]. Science of the Total Environment,2019,694:133741.
    [37] CHEN Y,CHENG J,CREAMER K. Inhibition of anaerobic digestion process:a review[J]. Bioresour Technology,2008,99(10):4044-4064.
    [38] SHAO Q Q,FANG S Y,FANG X Y,et al. Boosting short-chain fatty acids production from co-fermentation of orange peel waste and waste activated sludge:Critical role of pH on fermentation steps and microbial function traits[J]. Bioresource Technology,2023,380:129128.
    [39] LV J H,LI W T,WAN Y F,et al. Effect of pH value on organic matters solubilization and microbial community structures in sludge fermentation[J]. Journal of Safety and Environment,2020,20(4):1517-1525. 吕景花,李婉婷,万芸菲,等. pH值对剩余污泥有机物溶出和菌群结构的影响[J]. 安全与环境学报,2020,20(4):1517-1525.
    [40] WANG Y,YUN C,NAN S,et al. The influence of a stepwise pH increase on volatile fatty acids production and phosphorus release during Al-waste activated sludge fermentation[J]. Bioresource Technology,2021,320:124276.
    [41] YUAN Y Y,HU X Y,CHEN H B,et al. Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge[J]. Science of the Total Environment,2019,694:133741.
    [42] BI H H,GAO C D,LIU Y W,et al. Effects of pH control methods on anaerobic fermentation of waste activated sludge[J]. China Environmental Science,2023,43(9):4648-4657. 毕豪华,高春娣,刘奕伟,等. pH值调控方法对剩余污泥厌氧发酵的影响[J]. 中国环境科学,2023,43(9):4648-4657.
    [43] LI J,XIN W Z,LIANG J H,et al. Alkaline fermentation of refinery waste activated sludge mediated by refinery spent caustic for volatile fatty acids production[J]. Journal of Environmental Management,2022,324:116317.
    [44] KAYHANIAN M,TCHOBANOGLOUS G. Computation of C/N ratios for various organic fractions[J]. BioCycle,1992,33(5):58.
    [45] HUANG X D,ZHAO J W,XU Q X,et al. Enhanced volatile fatty acids production from waste activated sludge anaerobic fermentation by adding tofu residue[J]. Bioresource Technology,2019,274(1):430-438.
    [46] YUAN Y,WANG B,LI Y B,et al.. Enhancement of co-digestion of sludge and food waste by high temperature pretreatment[J]. Environmental Engineering,2023,41(2):91-97. 袁悦,王博,李永波,等. 高温预处理强化污泥与餐厨垃圾共消化[J]. 环境工程,2023,41(2):91-97.
    [47] FANG S Y,CAO W B,SHAO Q Q,et al. Reutilization of waste crawfish shell and sludge for efficient volatile fatty acids production by synchronously regulating the bioavailable substrates and microbial metabolic traits[J]. Journal of Cleaner Production,2022,349:131456.
    [48] LUO J Y,HUANG W X,GUO W,et al. Novel strategy to stimulate the food wastes anaerobic fermentation performance by eggshell wastes conditioning and the underlying mechanisms[J]. Chemical Engineering Journal,2020,398:125560.
    [49] VIDAL C,PEREZ N,ASTALS S,et al. Assessing the potential of waste activated sludge and food waste co-fermentation for carboxylic acids production[J]. Science of the Total Environment,2021,757:143763.
    [50] LI Q S,GUO X,LIU B,et al. Study on methane production by thermophilic anaerobic digestion of municipal sludge and corn straw[J]. Environmental Engineering,2022,40(7):139-145. 李秋实,郭祥,刘彬,等. 市政污泥与玉米秸秆混合高温厌氧发酵产甲烷研究[J]. 环境工程,2022,40(7):139-145.
    [51] LUO J Y,LI Y X,LI H,et al. Deciphering the key operational factors and microbial features associated with volatile fatty acids production during paper wastes and sewage sludge co-fermentation[J]. Bioresource Technology,2022,344:126318.
    [52] LUO J Y,ZHU Y,SONG A Q,et al. Efficient short-chain fatty acids recovery from anaerobic fermentation of wine vinasse and waste activated sludge and the underlying mechanisms[J]. Biochemical Engineering Journal,2019,145:18-26.
    [53] SHAO Q Q,ZHANG Q,FANG S Y,et al. Upgrading volatile fatty acids production from anaerobic co-fermentation of orange peel waste and sewage sludge:Critical roles of limonene on functional consortia and microbial metabolic traits[J]. Bioresource Technology,2022,362:127773.
    [54] GUO Z R,CHEN Z Q,CHI R G,et al. Prediction of polyhydroxyalkanoate(PHA)production utilizing food waste based on GA-BP neural network method[J]. Environmental Engineering,2022,40(4):166-173. 郭子瑞,陈志强,池日光,等. 基于GA-BP神经网络的餐厨垃圾合成PHA工艺产量预测[J]. 环境工程,2022,40(4):166-173.
    [55] SARATALE R G,CHO S K,KADAM A A,et al. Developing microbial co-culture system for enhanced polyhydro-xyalkanoates(PHA)production using acid pretreated lignocellulosic biomass[J]. Polymers,2022,14(4):726.
    [56] RAZA Z A,ABID S,BANAT I M. Polyhydroxyalkanoates:Characteristics,production,recent developments and applications[J]. International Biodeterioration & Biodegradation,2018,126:45-56.
    [57] CUI Y W,LIN X Y,JI S Y,et al. Influence of SRT on enriching halophilic MMC with capacity of PHA storage[J]. CIESC Journal,2016,67(6):2575-2582. 崔有为,林小媛,冀思远,等. SRT对富集高聚PHA能力嗜盐MMC的影响[J]. 化工学报,2016,67(6):2575-2582.
    [58] WU Y Q,SONG X L,ZHANG Y H,et al. Effects of free nitrous acid combined with alkyl polyglucoside on short-chain fatty acids production from waste activated sludge anaerobic fermentation and fermentation liquor for polyhydroxyalkanoates synthesis[J]. Journal of Water Process Engineering,2023,52:103515.
    [59] LORINI L,MUNARIN G,SALVATORI G,et al. Sewage sludge as carbon source for polyhydroxyalkanoates:a holistic approach at pilot scale level[J]. Journal of Cleaner Production,2022,354:131728.
    [60] GAMEIRO T,SOUSA F,SILVA F,et al. Olive oil mill wastewater to volatile fatty acids:statistical study of the acidogenic process[J]. Water Air And Soil Pollution,2015,226(4):1-13.
    [61] GABRIELA M,TERESA G,ADRIANA A,et al. Towards PHA production from wastes:the bioconversion potential of different activated sludge and food industry wastes into VFA through acidogenic fermentation[J]. Waste and Biomass Valorization,2021,12(12):6861-6873.
    [62] ZHU W B,GAO M,YIN Z H,et al. Research progress on caproic acid production from organic waste by anaerobic fermentation[J]. Environmental Engineering,2020,38(1):128-134. 朱文彬,高明,阴紫荷,等. 有机废物厌氧发酵生物合成己酸研究进展[J]. 环境工程,2020,38(1):128-134.
    [63] GROOTSCHOLTEN T,STRIK D,STEINBUSCH K,et al. Two-stage medium chain fatty acid(MCFA)production from municipal solid waste and ethanol[J]. Applied Energy,2014,116:223-229.
    [64] WU Q L,BAO X,GUO W Q,et al. Medium chain carboxylic acids production from waste biomass:current advances and perspectives(Review)[J]. Biotechnology Advances,2019,37(5):599-615.
    [65] TANG J,DAI K,WANG Q T,et al. Caproate production from xylose via the fatty acid biosynthesis pathway by genus Caproiciproducens dominated mixed culture fermentation[J]. Bioresource Technology,2022,351:126978.
    [66] WU Q L,DENG L,REN W T,et al. Medium chain fatty acids biosynthesis from waste biomass by microbial chain elongation technology[J]. Chinese Journal of Environmental Engineering,2023,17(7):2099-2108. 吴清莲,邓琳,任韦同,等. 微生物碳链延长技术转化废弃生物质合成中链脂肪酸[J]. 环境工程学报,2023,17(7):2099-2108.
    [67] WU S L,WEI W,WANG Y,et al. Transforming waste activated sludge into medium chain fatty acids in continuous two-stage anaerobic fermentation:demonstration at different pH levels[J]. Chemosphere,2022,288(1):132474.
    [68] WANG Y F,WANG X M,WANG D B,et al. Ferrate pretreatment-anaerobic fermentation enhances medium-chain fatty acids production from waste activated sludge:performance and mechanisms[J]. Water Research,2023,229:119457.
    [69] LIU H,LI X,ZHANG Z H,et al. Urine pretreatment enhances energy recovery by boosting medium-chain fatty acids production from waste activate sludge through anaerobic fermentation[J]. Chemical Engineering Journal,2024,482:148842.
    [70] HYUN U,JONG M. Biodiesel production by various oleaginous microorganisms from organic wastes[J]. Bioresource Technology,2018,256(1):502-508.
    [71] MERCEDES L,JOSE A,CRISTINA G,et al. Volatile fatty acids as novel building blocks for oil based chemistry via oleaginous yeast fermentation[J]. Biotechnology and Bioengineering,2020,117(1):238-250.
    [72] EMMANUEL D,ALEX Z,RAFAEL H,et al. Microbial lipid production through integrated anaerobic-aerobic biotreatment process:an urban-based biorefinery concept[J]. ACS Sustainable Chemistry & Engineering,2021,9(34):11439-11447.
    [73] JUAN F,PAULA O,SERGIO C,et al. Production of biolipids from volatile fatty acids of sewage sludge by Yarrowia lipolytica[J]. Fuel,2023,348:128488.
    [74] SONG Q Q,KONG F Y,LIU B F,et al. Insights into the Effect of Rhamnolipids on the Anaerobic Fermentation and Microalgae Lipid Production of Waste Activated Sludge:Performance and Mechanisms[J]. ACS ES &T Engineering,2023,3(3):438-448.
    [75] SATYA R,NITAI B. Optimization of process parameters for enhanced biohydrogen production using potato waste as substrate by combined dark and photo fermentation[J]. Biomass Conversion and Biorefinery,2024,14(4):4791-4811.
    [76] VENKATA M. Understanding acidogenesis towards green hydrogen and volatile fatty acid production-Critical analysis and circular economy perspective[J]. Chemical Engineering Journal,2023,464:141550.
    [77] LU L,XING D,XIE T,et al. Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells[J]. Biosensors and Bioelectronics. 2010,25(12):2690-2695.
    [78] WU T T,ZHU G F,ZOU R,et al. Hydrogen production via single-chamber microbial electrolysis cell fed with fermentation effluent[J]. Chemical Industry and Engineering Progress,2013,(6):1435-1438,1456. 吴婷婷,朱葛夫,邹然,等. 发酵制氢废液的微生物电解池产氢[J]. 化工进展,2013,(6):1435-1438,1456.
    [79] WANG L,YANG C X,THANGAVEL S,et al. Enhanced hydrogen production in microbial electrolysis through strategies of carbon recovery from alkaline/thermal treated sludge[J]. Frontiers of Environmental Science & Engineering,2021,15(4):56.
    [80] CHOI Y,KIM D,CHOI H,et al. A study of electron source preference and its impact on hydrogen production in microbial electrolysis cells fed with synthetic fermentation effluent[J]. Bioengineered,2023,14(1):2244759.
    [81] MA X J,JIANG T Y,LI D N,et al. Research progress of acid production from anaerobic fermentation of sludge and its application[J]. Journal of Tianjin University of Science & Technology,2022,37(5):71-80. 马晓军,江天宇,李冬娜,等. 污泥厌氧发酵产酸的研究进展及应用[J]. 天津科技大学学报,2022,37(5):71-80.
    [82] HAO X X,ZHOU X X,ZHANG J,et al. Efficacy and mechanism of microbial fuel cell treating Cr(VI)-containing wastewater with anaerobically fermented sludge as substrate[J]. China Environmental Science,2014,34(10):2581-2587. 郝小旋,周秀秀,张姣,等. 厌氧发酵污泥燃料电池处理含铬废水的效能及机理[J]. 中国环境科学,2014,34(10):2581-2587.
    [83] XIN X D,QIU W. Linking microbial mechanism with bioelectricity production in sludge matrix-fed microbial fuel cells:Freezing/thawing liquid versus fermentation liquor[J]. Science of the Total Environment,2021,752:141907.
    [84] HE J G,XIN X D,PEI Z,et al. Microbial profiles associated improving bioelectricity generation from sludge fermentation liquid via microbial fuel cells with adding fruit waste extracts[J]. Bioresource Technology,2021,337:125452.
    [85] XIN X D,WANG B X,HONG J M,et al. Microbial community profiles related to volatile fatty acids production in mesophilic and thermophilic fermentation of waste activated sludge pretreated by enzymolysis[J]. Journal of Harbin Institute of Technology,2020,27(4):60-73.
    [86] WANG J L,PENG Y Z,LIU Y,et al. Hydrolysis Acidification/AAO Process for simultaneous nitrogen and phosphorus removal and excess activated sludge reduction[J]. China Water & Wastewater,2007,23:1-6. 王建龙,彭永臻,刘莹,等. 水解酸化/AAO工艺的同步脱氮除磷及污泥减量研究[J]. 中国给水排水,2007,23:1-6.
    [87] LI J D,ZHANG W,ZHANG X L,et al. Additional carbon source for dentrifying phosphorus removal based on hydrolysis acidification of sludge pretreated by ultrasound[J]. China Water & Wastewater,2019,35(9):9-15. 李健弟,张伟,张小玲,等. 超声预处理污泥发酵液作为反硝化聚磷补充碳源研究[J]. 中国给水排水,2019,35(9):9-15.
    [88] AESOY A,ODEGAARD H. Nitrogen removal efficiency and capacity in biofilms with biologically hydrolysed sludge as a carbon source[J]. Water Science & Technology,2015,30(6):63-71.
    [89] ZHANG M J,WANG X M,YANG J W,et al. Nitrogen removal performance of high ammonium and high salt wastewater by adding carbon source from food waste fermentation with different acidogenic metabolic pathways[J]. Chemosphere,2022,292:133512.
    [90] LI L,LIAO Q Q,LIU C H,et al. Enhanced biological wastewater treatment supplemented with anaerobic fermentation liquid of primary sludge[J]. Journal of Environmental Management,2023,347:119086.
    [91] Mahmoud A,Hamza R,Elbeshbishy E. Enhancement of denitrification efficiency using municipal and industrial waste fermentation liquids as external carbon sources[J]. Science of the Total Environment,2022,816:151578.
    [92] SUN J,SUN M,GUO L,et al. The effects of denitrification with sludge alkaline fermentation liquid and thermal hydrolysis liquid as carbon sources[J]. RSC Advances,2016,6(76):72333-72341.
    [93] LIU X Y,YANG H,CHANG J,et al. Re-hydrolysis characteristics of alkaline fermentation liquid from waste activated sludge:Feasibility as a carbon source for nitrogen removal[J]. Process Safety and Environmental Protection,2022,165:230-240.
    [94] YOU J H,TANG S L,ZONG Y C,et al. Effects of adding different ratios of residual sludge and food waste co-anaerobic fermentation liquid to AAO wastewater treatment process[J]. Journal of Water Process Engineering,2023,53:103735.
    [95] ZHANG F Y,CHEN Y,ZHAO F,et al. Use of magnetic powder to effectively improve the denitrification employing the activated sludge fermentation liquid as carbon source[J]. Journal of Environmental Management,2023,348:119049.
  • 加载中
计量
  • 文章访问数:  86
  • HTML全文浏览量:  23
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-15
  • 录用日期:  2024-08-24
  • 修回日期:  2024-08-08

目录

    /

    返回文章
    返回