中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

rGO/Fe(0)复合材料的制备及其对Cr(Ⅵ)的吸附机理

刘转年 刘威 廖晟

刘转年, 刘威, 廖晟. rGO/Fe(0)复合材料的制备及其对Cr(Ⅵ)的吸附机理[J]. 环境工程, 2025, 43(6): 127-137. doi: 10.13205/j.hjgc.202506013
引用本文: 刘转年, 刘威, 廖晟. rGO/Fe(0)复合材料的制备及其对Cr(Ⅵ)的吸附机理[J]. 环境工程, 2025, 43(6): 127-137. doi: 10.13205/j.hjgc.202506013
LIU Zhuannian, LIU Wei, LIAO Sheng. Preparation of rGO/Fe(0) composite material and its adsorption mechanism for Cr(Ⅵ)[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(6): 127-137. doi: 10.13205/j.hjgc.202506013
Citation: LIU Zhuannian, LIU Wei, LIAO Sheng. Preparation of rGO/Fe(0) composite material and its adsorption mechanism for Cr(Ⅵ)[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(6): 127-137. doi: 10.13205/j.hjgc.202506013

rGO/Fe(0)复合材料的制备及其对Cr(Ⅵ)的吸附机理

doi: 10.13205/j.hjgc.202506013
基金项目: 

陕西省重点研发计划项目(2022SF-578);陕西省水利科技计划资助项目(2022slkj-5)

详细信息
    作者简介:

    刘转年(1968—),男,教授,研究方向为水处理材料与技术。zhuannianliu@163.com

    通讯作者:

    刘威(1995—),男,硕士,研究方向为水处理材料与技术。1732242444@qq.com

Preparation of rGO/Fe(0) composite material and its adsorption mechanism for Cr(Ⅵ)

  • 摘要: 采用硼氢化钠(NaBH4)将氧化石墨烯(GO)与Fe(Ⅱ)还原制备rGO/Fe(0)复合材料,以Cr(Ⅵ)模拟废水为研究对象,采用SEM、XPS、FT-IR、XRD及BET表征技术对rGO/Fe(0)进行微观形貌和物化性质表征分析,结合吸附动力学、吸附热力学和吸附等温线等模型探究rGO/Fe(0)对Cr(Ⅵ)的吸附还原性能及机理。结果表明:rGO/Fe(0)相对rGO的比表面积(20.03 m2/g)提高了111.1%,孔容(0.08 cm3/g)提高了162.5%,孔径(16.45 nm)提高了21.7%。rGO/Fe(0)将Cr(Ⅵ)吸附还原成Cr(Ⅲ)后被rGO固定在表面,剩余的部分Cr(Ⅲ)扩散到溶液中。pH=3时,rGO/Fe(0)对Cr(Ⅵ)的去除量为28.75 mg/g,其中还原量为23.91 mg/g,溶液中的Cr(Ⅲ)为11.54 mg/L。rGO/Fe(0)去除Cr(Ⅵ)的主要机理为静电吸引、还原作用和络合作用。rGO/Fe(0)对Cr(Ⅵ)的去除率为57.5%,其中还原反应贡献率为83.2%,说明rGO/Fe(0)去除Cr(Ⅵ)的主要机理为还原反应,同时Fe(0)被氧化成Fe(Ⅱ)和Fe(Ⅲ)。循环利用结果表明,rGO/Fe(0)在循环4次后对Cr(Ⅵ)去除率降低17.6百分点。rGO/Fe(0)对实际Cr(Ⅵ)废水的去除率为79.5%。
  • [1] SHI Y,ZOU L,LIANG Y J,et al. Full life cycle prevention and control of heavy metal pollution:challenges and opportunities[J]. Environmental Engineering,2023,41(9):29-35. 石岩,邹龙,梁彦杰,等. 重金属污染全生命周期防治:挑战与机遇[J]. 环境工程,2023,41(9):29-35
    [2] KHOSROSHAHI N,DARABI G M,SAFARIFARD V. Fabrication of a novel heteroepitaxial structure from an MOF-on-MOF architecture as a photocatalyst for highly efficient Cr(Ⅵ)reduction[J]. New Journal of Chemistry,2022,46(7):3106-3115.
    [3] VALADI F M,SHAHSAVARI S,AKBARZADEH E,et al. Preparation of new MOF-808/chitosan composite for Cr(Ⅵ)adsorption from aqueous solution:experimental and DFT study[J]. Carbohydr Polym,2022,288:119383.
    [4] TIAN J Y,LV W C,SHEN A S,et al. Construction of the copper metal-organic framework(MOF)-on-indium MOF Z-scheme heterojunction for efficiently photocatalytic reduction of Cr(VI)[J]. Separation and Purification Technology,2023,327:124903.
    [5] MA Yu,YANG Kai,WANG Gang,et al. Research progress on treatment methods of chromium-containing wastewater[J]. Applied Chemical Industry,2023,52(5):1466-1472. 马玉,杨凯,王刚,等. 含铬废水处理方法的研究进展[J]. 应用化工,2023,52(5):1466-1472
    [6] CHANG Z Y,HE B L,GONG X S,et al. Cr-based metal-organic frameworks(MOFs)with high adsorption selectivity and recyclability for Au(III):adsorption behavior and mechanism study[J]. Separation and Purification Technology,2023,325:124612.
    [7] FAN X L,ZHAN Z T,GAO B,et al. Research progress on heavy metal wastewater treatment technology[J]. China Nonferrous Metallurgy,2023,52(4):112-127. 樊小磊,詹作泰,高柏,等. 重金属废水处理技术研究进展[J]. 中国有色冶金,2023,52(4):112-127
    [8] PUNIA P,BHARTI M K,DHAR R,et al. Recent advances in detection and removal of heavy metals from contaminated water[J]. ChemBioEng Reviews,2022,9(4):351-369.
    [9] SHAO P,LIANG D,YANG L,et al. Evaluating the adsorptivity of organo-functionalized silica nanoparticles towards heavy metals:quantitative comparison and mechanistic insight[J]. J Hazard Mater,2020,387:121676.
    [10] LIU B,CHEN C,LI W,et al. Effective removal of Cr(VI)from aqueous solution through adsorption and reduction by magnetic S-doped Fe-Cu-La trimetallic oxides[J]. Journal of Environmental Chemical Engineering,2022,10(3):107433.
    [11] FENG X,LONG R,WANG L,et al. A review on heavy metal ions adsorption from water by layered double hydroxide and its composites[J]. Separation and Purification Technology,2022,284:120099.
    [12] SARMIENTO V,LOCKETT M,SUMBARDA-RAMOS E G,et al. Effective removal of metal ion and organic compounds by non-functionalized rGO[J]. Molecules,2023,28(2):649.
    [13] HUO J B,YU G C. Poly(vinyl)alcohol-assisted fabrication of magnetic reduced graphene oxide aerogels and their adsorption performance for Cd(II)and Pb(II)[J]. Water Air and Soil Pollution,2023,234(4):231.
    [14] YAO H,SHI L,ZHOU X J. Research progress on application of reduced graphene oxide[J]. Coal and Chemical Industry,2023,46(11):145-152. 姚辉,石琳,周新军. 还原氧化石墨烯的应用研究进展[J]. 煤炭与化工,2023,46(11):145-152
    [15] LI J,BAO D J,TIAN Y G,et al. Adsorption performance and mechanism of nano-manganese dioxide@reduced graphene oxide for Pb(II)in water[J]. New Chemical Materials,2021,49(2):195-199. 李静,鲍东杰,田云阁,等. 纳米二氧化锰@还原氧化石墨烯对水中Pb(Ⅱ)的吸附性能与吸附机制研究[J]. 化工新型材料,2021,49(02):195-199
    [16] KANG Z Y,GAO H,HU Z L,et al. Ni-Fe/reduced graphene oxide nanocomposites for hexavalent chromium reduction in an aqueous environment[J]. Acs Omega,2022,7(5):1-11.
    [17] UTAMI M,WANG S,MUSAWWA M M,et al. Simultaneous photocatalytic removal of organic dye and heavy metal from textile wastewater over N-doped TiO2 on reduced graphene oxide[J]. Chemosphere,2023,332:138882.
    [18] JIN H W,ZHANG X L,NIU H Y,et al. Preparation of biochar-supported iron phosphide/zero-valent iron with different carbon sources and removal of 3,4,5,6-tetrachloropyridine-2-carboxylic acid in water[J]. Environmental Chemistry,2023,43(9):1-11. 靳惠文,张小乐,牛红云,等. 不同碳源的生物质炭-磷化铁/零价铁的制备及对水中3,4,5,6-四氯吡啶-2-羧酸的去除[J]. 环境化学,2023,43(9):1-11
    [19] MU Y. Study on the reduction and removal of hexavalent chromium in water by oxalic acid or nano zero-valent iron and its mechanism[D]. Wuhan:Central China Normal University,2018. 穆毅. 草酸或零价纳米铁还原去除水体六价铬及机理研究[D]. 武汉:华中师范大学,2018.
    [20] CHEN Z D,KONG X K,XU C X,et al. Research progress of sulfidated nano zero-valent iron in groundwater pollution remediation[J/OL]. https://doi.org/10.19674/j.cnki.issn1000-6923.20240011.020,2024-01-12. 陈宗定,孔祥科,许春雪,等. 硫化纳米零价铁在地下水污染修复中的研究进展[J/OL]. https://doi.org/10.19674/j.cnki.issn1000-6923.20240011.020. 2024-1-12
    [21] SUN P,WANG Z Q,AN S W,et al. Biochar-supported nZVI for the removal of Cr(Ⅵ)from soil and water:advances in experimental research and engineering applications[J]. Journal of Environmental Management,2022,316:115211.
    [22] SUN Y,LEI C,KHAN E,et al. Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater[J]. Chemosphere,2017,176:315-323.
    [23] SUN Y,YU I K M,TSANG D C W,et al. Multifunctional iron-biochar composites for the removal of potentially toxic elements,inherent cations,and hetero-chloride from hydraulic fracturing wastewater[J]. Environment International,2019,124:521-532.
    [24] LIAO X S,ZHU C Y,QIU Y,et al. Degradation of oxytetracycline by nano zero-valent iron-based biochar activated persulfate[J]. Environmental Engineering,2022,40(8):118-124,195. 廖晓数,朱成煜,仇玥,等. 纳米零价铁基生物炭活化过硫酸盐降解土霉素[J]. 环境工程,2022,40(8):118-124,195
    [25] QIAO H Y,ZHAO Y S,HU J. Study on remediation effect and influencing factors of biochar-supported nano zero-valent iron on hexavalent chromium in groundwater[J]. Hydrogeology & Engineering Geology,2024,51(1):190-200. 乔华艺,赵勇胜,胡晶. 生物炭负载纳米零价铁对地下水中六价铬的修复效果和影响因素研究[J]. 水文地质工程地质,2024,51(1):190-200
    [26] FAKHRI H,FARZADKIA M,BOUKHERROUB R,et al. Design and preparation of core-shell structured magnetic graphene oxide@MIL-101(Fe):photocatalysis under shell to remove diazinon and atrazine pesticides[J]. Solar Energy,2020,208:990-1000.
    [27] FEIZPOOR S,HABIBI Y A,LUQUE R. Preparation of TiO2/Fe-MOF n-n heterojunction photocatalysts for visible-light degradation of tetracycline hydrochloride[J]. Chemosphere,2023,336:139101.
    [28] ALSHORIFI F T,DAFRAWY S M EL,AHMED A I. Fe/Co-MOF Nanocatalysts:greener chemistry approach for the removal of toxic metals and catalytic applications[J]. ACS Omega,2022,7(27):23421-23444.
    [29] GOKIRMAKSOGUT E. Superior adsorption efficiency of MIL-101(Cr)and Nano-MIL-101(Cr)in anionic and cationic dye removal from aqueous solution[J]. Chemistryselect,2023,8(21):e202205000.
    [30] FERREIRA I C,FERREIRA T J,BARBOSA A D S,et al. Cr-based MOF/IL composites as fillers in mixed matrix membranes for CO2 separation[J]. Separation and Purification Technology,2021,276:119303.
    [31] KESHTA B E,YU H,WANG L. Cutting-edge in the green synthesis of MIL-101(Cr)MOF based on organic and inorganic waste recycling with extraordinary removal for anionic dye[J]. Separation and Purification Technology,2024,332:125744.
    [32] KHOSRAVI F,GHOLINEJAD M,SANSANO J M,et al. Bimetallic Fe-Cu metal organic frameworks for room temperature catalysis[J]. Applied Organometallic Chemistry,2022,36(7):e6749.
    [33] SAFARI M,MAZLOOM J. Outstanding energy storage performance in Co-Fe bimetallic metal-organic framework spindles via decorating with reduced graphene oxide nanosheets[J]. Journal of Energy Storage,2023,58:106390.
    [34] MORE M S,BODKHE G A,INGLE N N,et al. Metal-organic framework(MOF)/reduced graphene oxide(rGO)composite for high performance CO sensor[J]. Solid-State Electronics,2023,204:108638.
    [35] ALSHORIFI F T,DAFRAWY S M EL,AHMED A I. Fe/Co-MOF nanocatalysts:greener chemistry approach for the removal of toxic metals and catalytic applications[J]. ACS Omega,2022,7(27):23421-23444.
    [36] TANG T T. Modification of nano zero-valent iron and its performance and mechanism in treating water pollutants[D]. Nanchang:Nanchang Hangkong University,2019. 汤婷婷. 纳米零价铁的改性及其处理水中污染物的性能和机理研究[D]. 南昌:南昌航空大学,2019.
    [37] HU C,PAN P,HUANG H,et al. Cr-MOF-Based electrochemical sensor for the detection of P-Nitrophenol[J]. Biosensors(Basel),2022,12(10):12,813.
    [38] NAGHANI M E,NEGHABI M,ZADSAR M,et al. Synthesis and characterization of linear/nonlinear optical properties of graphene oxide and reduced graphene oxide-based zinc oxide nanocomposite[J]. Scientific Reports,2023,13(1):1496.
    [39] LI L,XU Y,ZHONG D,et al. CTAB-surface-functionalized magnetic MOF@MOF composite adsorbent for Cr(Ⅵ)efficient removal from aqueous solution[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,586:124255.
    [40] LI X,WANG C,CHEN X,et al. Enhanced oxidation and removal of As(Ⅲ)from water using biomass-derived porous carbon-supported nZVI with high iron utilization and fast adsorption[J]. Journal of Environmental Chemical Engineering,2023,11(1):109038.
    [41] WANG X S,CHEN L F,LI F Y,et al. Removal of Cr(VI)with wheat-residue derived black carbon:reaction mechanism and adsorption performance[J]. Journal of hazardous materials,2010,175(1/3):816-822.
    [42] SHEN H Z. Study on the removal performance and mechanism of Cr(Ⅵ)in wastewater by COFs/Fe0 nanocomposite[D]. Chongqing:Chongqing University,2022. 沈慧珍. COFs/Fe0纳米复合材料对废水中Cr(Ⅵ)的去除性能和机理研究[D]. 重庆:重庆大学,2022.
    [43] SHEN Y,ZHOU S Y,MA J L,et al. Study on adsorption of Cr(Ⅵ)by nano zero-valent iron/biochar materials[J]. Environmental Science & Technology,2023,46(10):99-103. 沈昱,周申玥,马君玲,等. 纳米零价铁/生物炭材料吸附Cr(Ⅵ)的研究[J]. 环境科学与技术,2023,46(10):99-103
    [44] HE Y Y,WANG G,LUO S C,et al. Adsorption performance and mechanism of dithiocarboxylated wheat straw for Cr(Ⅵ)in water[J]. Acta Scientiae Circumstantiae,2023,43(6):366-379. 何扬洋,王刚,罗仕成,等. 二硫代羧基化小麦秸秆对水中Cr(Ⅵ)的吸附性能及机理[J]. 环境科学学报,2023,43(6):366-379
    [45] LAN M,WANG L J,ZHANG H N,et al. Study on adsorption performance of citric acid modified activated carbon for Cr(Ⅵ)in water[J]. Water Treatment Technology,2018,44(9):80-84,92. 蓝梅,王丽君,张会宁,等. 柠檬酸改性活性炭对水中Cr(Ⅵ)的吸附性能研究[J]. 水处理技术,2018,44(9):80-84,92
    [46] NORDIN N,ASMADI N A A,MANIKAM M K,et al. Removal of hexavalent chromium from aqueous solution by adsorption on palm oil fuel ash(POFA)[J]. Journal of Geoscience and Environment Protection,2020,8(2):112.
    [47] LU X G,DUAN J J,HUANG L C,et al. Study on adsorption performance of vacuum carbonized walnut shell for Cr(Ⅵ)[C]// 18th Academic Symposium on Reactive Polymers of Chinese Chemical Society,Shanghai,2016. 鲁秀国,段建菊,黄林长,等. 真空炭化核桃壳对Cr(Ⅵ)的吸附性能研究[C]// 中国化学会第18届反应性高分子学术研讨会,上海,2016.
    [48] CHEN Y M,CHEN J F. Study on adsorption performance of litchi shell for Cr(Ⅵ)[J]. Journal of Jinggangshan University(Natural Science Edition),2015,36(3):49-53. 陈艺敏,陈建福. 荔枝壳对Cr(Ⅵ)的吸附性能研究[J]. 井冈山大学学报(自然科学版),2015,36(3):49-53.
    [49] YANG Z X,SONG L L,YANG L. Experimental study on removal of Cr(Ⅵ)from wastewater by bran[J]. Applied Chemical Industry,2021,50(8):2168-2171. 杨增霞,宋露露,杨林. 麸皮去除废水中Cr(Ⅵ)的实验研究[J]. 应用化工,2021,50(8):2168-2171.
    [50] GUO X,LIU A,LU J,et al. Adsorption mechanism of hexavalent chromium on biochar:kinetic,thermodynamic,and characterization studies[J]. ACS Omega,2020,5(42):27323-27331.
  • 加载中
计量
  • 文章访问数:  83
  • HTML全文浏览量:  25
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-24
  • 录用日期:  2025-03-20
  • 修回日期:  2025-03-05

目录

    /

    返回文章
    返回