中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电场作用下悬移质泥沙沉降特性及其絮凝效果优化

吴淼 柏文文 刘伊丰

吴淼, 柏文文, 刘伊丰. 电场作用下悬移质泥沙沉降特性及其絮凝效果优化[J]. 环境工程, 2025, 43(6): 154-165. doi: 10.13205/j.hjgc.202506016
引用本文: 吴淼, 柏文文, 刘伊丰. 电场作用下悬移质泥沙沉降特性及其絮凝效果优化[J]. 环境工程, 2025, 43(6): 154-165. doi: 10.13205/j.hjgc.202506016
WU Miao, BAI Wenwen, LIU Yifeng. Optimization of sedimentation characteristics and flocculation effects of suspended sediment under electric field action[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(6): 154-165. doi: 10.13205/j.hjgc.202506016
Citation: WU Miao, BAI Wenwen, LIU Yifeng. Optimization of sedimentation characteristics and flocculation effects of suspended sediment under electric field action[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(6): 154-165. doi: 10.13205/j.hjgc.202506016

电场作用下悬移质泥沙沉降特性及其絮凝效果优化

doi: 10.13205/j.hjgc.202506016
基金项目: 

国家自然科学基金项目“声电耦合作用下悬移质絮凝机理研究”(52209092)

详细信息
    作者简介:

    吴淼(2001—),男,硕士,主要研究方向为河流水沙运动。979183808@qq.com

    通讯作者:

    柏文文(1989—),男,副教授,主要研究方向为水力学及河流动力学、水文学及水资源。baiwenwen@qhu.edu.cn

Optimization of sedimentation characteristics and flocculation effects of suspended sediment under electric field action

  • 摘要: 开发和利用非常规水资源——雨水资源是缓解水资源供需矛盾的重要途径。电絮凝能显著加速泥沙沉降,在较短时间内提升和改善水质,避免了因自然絮凝时间较长而引起的雨水利用时效性低的问题。设计室内实验,探究了电流密度、极板间距、泥沙初始浓度和反应时间对泥沙沉降的影响,选取浊度去除率、絮团粒径能耗为评价指标,共完成128 组实验,并利用响应面法验证和优化参数组合。结果表明:根据溶液中的泥沙分布及浊度变化情况,反应0~10 min为絮凝前期,泥沙颗粒去除主要依靠自然沉降;反应20~40 min为絮凝后期,此阶段内铝酸络合物与泥沙颗粒吸附结合,主导小颗粒泥沙絮凝沉降。电流密度较低(10 A/m2)时,浊度去除率上升缓慢;而电流密度较高(40 A/m2)时,浊度去除率达到快速上升之后下降。泥沙初始浓度较低(1 g/L)时,浊度去除率偏低,电絮凝效果未得以充分发挥;而泥沙初始浓度较高(3 g/L)时,浊度去除率同样偏低,这是因为泥沙过量而生成絮体不足。电解产生的气泡使得铝酸络合物与颗粒接触机率增强,此外铝酸络合物与泥沙浓度的比值是影响絮凝效果的主要原因,特别当电流密度>10 A/m2,且电解20~25 min时,絮凝效果提升最为明显。响应面法优化表明,在电流密度为30 A/m2,初始浓度为2.4 g/L,反应时间为37 min的运行条件下,电絮凝法对泥沙溶液浊度的去除率达到了91.28%,吨水处理成本为0.02 元,电耗为0.06 kW·h。该研究对电絮凝及雨水资源利用装置设计和应用具有参考价值。
  • [1] LI J,YANG W J,JING S Y,et al. Current status and progress of research on cohesive sediment flocculation[J]. Journal of Yangtze River Scientific Research Institute,2022,39(4):8-13. 李杰,杨文俊,景思雨,等. 黏性泥沙絮凝研究现状与进展[J]. 长江科学院院报,2022,39(4):8-13.
    [2] QUAN Y C,YANG K,GAN S M,et al. Research on the characteristics and resource utilization of static water sediments in barrier lakes in the upper reaches of the jinsha river[J]. Environmental Engineering,2024,42(8):1-7. 权蔚慈,杨凯,阚思蒙,等. 金沙江上游堰塞湖相静水沉积物特性及其资源化利用研究[J]. 环境工程,2024,42(8):1-7.
    [3] MENG X R,SHAO Q Z,WANG X Q,et al. Spatiotemporal characteristics and decoupling analysis of industrial water resource utilization and carbon emissions in the Yellow River Basin[J]. Yellow River,2024,46(9):1-8. 孟祥瑞,邵庆真,王向前. 黄河流域工业水资源利用与碳排放时空特征及脱钩分析[J]. 人民黄河,2024,46(9):1-8.
    [4] MA L,ZHANG G G,MENG R L,et al. Research on the sedimentation law of sediment flocculation based on flocculation kinetics[J]. People's Yangtze River,2022,53(8):204-209. 马林,张根广,孟若霖,等. 基于絮凝动力学的泥沙絮凝沉降规律研究[J]. 人民长江,2022,53(8):204-209.
    [5] WANG T,ZHAO D X,MA H B,et al. Discussion on the sedimentation reduction and operation mode of Xiaolangdi Reservoir[J]. Yellow River,2024,46(8):26-30. 王婷,赵东晓,马怀宝,等. 小浪底水库减淤调度模式探讨[J]. 人民黄河,2024,46(8):26-30.
    [6] ZHAO R H,HUA L L,WANG X J,et al. Study on the sand blocking effect of the sediment control scheme for the Yellow River Diversion Project[J]. Yellow River,2022,44(10):31-35. 赵然杭,华丽丽,王兴菊,等. 引黄工程沉沙调控方案阻沙效果研究[J]. 人民黄河,2022,44(10):31-35.
    [7] LI G,WANG X. Discussion on the high-quality development path of flood control engineering construction and management in the lower reaches of the Yellow River[J]. Yellow River,2022,44(2):230-234. 李戈,王绪. 黄河下游防洪工程建设管理高质量发展路径探讨[J]. 人民黄河,2022,44(2):230-231,234.
    [8] LI X X,WANG Y D,XIAO Y P,et al. Remote sensing monitoring and spatiotemporal changes of water quality in the nearshore waters of Shenzhen[J]. Environmental Engineering,2024,42(1):243-252. 黎栩霞,王裕东,肖佑鹏,等. 深圳近岸海域水质遥感监测及时空变化[J]. 环境工程,2024,42(1):243-252.
    [9] LIU J,SHEN Y,WANG X. Flocculation properties of cohesive fine-grained sediment in the three gorges reservoir under variable turbulent shear[J/OL]. Journal of Mountain Science,2022,19(8):2286-2296.
    [10] ZU B,WANG J,LI Z L,et al. Experimental study on flocculation of viscous sediment in the Three Gorges Reservoir area under turbulent shear action[J]. Advance in Water Science,2018,29(2):196-203. 祖波,王军,李振亮,等. 三峡库区黏性泥沙在紊动剪切作用下的絮凝试验研究[J]. 水科学进展,2018,29(2):196-203.
    [11] HAI X,SHAO Y Y,ZHANG J W. Experimental study on particle size variation analysis of sediment flocs under dynamic water conditions[J]. Science Technology and Engineering,2019,19(11):262-266. 海希,邵宇阳,张健玮. 动水条件下泥沙絮凝体粒径变化分析实验研究[J]. 科学技术与工程,2019,19(11):262-266.
    [12] GUO C,GUO L,BASS S,et al. On the role of organic matter composition in fresh-water kaolinite flocculation[J]. Journal of Environmental Management,2023,345,118576.
    [13] LIU T,ZHANG X,DING G,et al. Improvement of waste sludge dewaterability by a novel co-conditioning approach with polyaluminum chloride-sludge based carbon-polyacrylamide[J]. Separation and Purification Technology,2024,330:135698.
    [14] BIEN B,BIEN J. Influence of digested sludge conditioning on the dewatering processes and the quality of sludge liquid[J]. Ecological Chemistry and Engineering S-chemia I Inzynieria Ekologiczna S,2020,27(1):151-164.
    [15] KANG Y D,LI W,XU E W,et al. Rainfall runoff simulation and pollutant reduction rate evaluation under sponge measures[J]. Water Resources and Hydropower Engineering,2024,55(2):78-89. 康永德,李伟,许尔文,等. 海绵措施下降雨径流模拟及污染物削减率评价[J]. 水利水电技术(中英文),2024,55(2):78-89.
    [16] CHENG Y,ZHAO Y,DU P F,et al. Study on formation mechanism and catastrophability of mud-ball in mudflow from extreme rain-storm on Loess Plateau[J]. Water Resources and Hydropower Engineering,2023,54(6):34-45. 陈吟,赵莹,杜鹏飞,等. 黄土高原极端暴雨泥流中“泥球”的形成机理与致灾性研究[J]. 水利水电技术(中英文),2023,54(6):34-45.
    [17] YANG S Q,WEN P,JIANG F S,et al. Uurban flood runoff and waterlogging characteristics-based study on optimization of green roofs spatial layout[J]. Water Resources and Hydropower Engineering,2023,54(4):22-36. 杨寿泉,闻平,姜沣珊,等. 基于城市洪涝径流和积水特征的绿色屋顶空间布局优化研究[J]. 水利水电技术(中英文),2023,54(4):22-36.
    [18] WANG J,DENG H. Study on the pollution characteristics of initial rainwater runoff in different functional areas of Nanchang Economic Development Zone[J]. Jiangxi Chemical Industry,2024,40(5):87-90,94. 王俊,邓浩. 南昌市经开区不同功能区初期雨水径流污染特征研究[J]. 江西化工,2024,40(5):87-90,+ 94.
    [19] ZUO X J,LI H,FU L M,et al. Experimental study on the characteristics of runoff and rainwater settlement on highway pavement[J]. China Water & Wastewater,2011,27(15):60-63. 左晓俊,李贺,府灵敏,等. 高速公路路面径流雨水沉降特性试验研究[J]. 中国给水排水,2011,27(15):60-63.
    [20] JING G,REN S,POOLEY S,et al. Electrocoagulation for industrial wastewater treatment:An updated review[J]. Environmental Science:Water Research & Technology,2021,7(7):1177-1196.
    [21] WANG X M,WANG L,LI F T,et al. Study on the effect of coagulants on colloidal electromotive potential[J]. Industrial Safety and Environmental Protection,2006(2):7-9. 王晓敏,王亮,李风亭,等. 混凝剂对胶体电动电位的影响研究[J]. 工业安全与环保,2006(2):7-9.
    [22] ZAIED B,RASHID M,NASRULLAH M,et al. A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process[J]. Science of the Total Environment,2020,726:138095
    [23] RAHMAN N,JOL C,LINUS A,et al. Emerging application of electrocoagulation for tropical peat water treatment:A review[J]. Chemical Engineering and Processing:Process Intensification,2021,165:108449
    [24] AMITESH,DOHARE D,REKHATE C,et al. Removal of heavy metal from electroplating wastewater using electrocoagulation:A review[J]. Desalination and Water Treatment,2022,267:121-137.
    [25] ROCHA F,DE RADIGUÈS Q,THUNIS G,et al. Pulsed water electrolysis:A review[J]. Electrochimica Acta,2021,377:138052
    [26] ZHOU Y,PENG H,JIANG L,et al. Control of cyanobacterial bloom and purification of bloom-laden water by sequential electro-oxidation and electro-oxidation-coagulation[J]. Journal of Hazardous Materials,2024,462:132729
    [27] LUO Y,ZHANG K,LI Y,et al. Valorizing carbon dioxide via electrochemical reduction on gas-diffusion electrodes[J]. Infomat,2021,3(12):1313-1332.
    [28] MAGNISALI E,YAN Q,VAYENAS D. Electrocoagulation as a revived wastewater treatment method-practical approaches:a review[J]. Journal of Chemical Technology & Biotechnology,2022,97(1):9-25.
    [29] DU B,LI F H,XU C,et al. Sensitivity analysis of stress parameters of elliptical cross-section gate wells based on orthogonal test[J]. Water Resources and Hydropower Engineering,2023,54(11):53-65. 杜柏,李芬花,徐超,等. 基于正交试验法的椭圆断面闸门井结构力学特性参数敏感性分析[J]. 水利水电技术(中英文),2023,54(11):53-65.
    [30] HADIYAT M,SOPHA B,WIBOWO B. Response surface methodology using observational data:a systematic literature review[J]. Applied Sciences-Basel,2022,12:10663
    [31] ZHONG C H,FAN Z W,ZHOU J Z,et al. Study on frost resistance of stainless steel fiber recycled concrete based on Response Surface Method and Weibull distribution[J]. Water Resources and Hydropower Engineering,2024,55(2):50-61. 钟楚珩,范祖伟,周金枝,等. 基于响应面法和Weibull分布的不锈钢纤维再生混凝土抗冻性能研究[J]. 水利水电技术(中英文),2024,55(2):50-61.
  • 加载中
计量
  • 文章访问数:  66
  • HTML全文浏览量:  26
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-14
  • 录用日期:  2024-11-10
  • 修回日期:  2024-10-15

目录

    /

    返回文章
    返回