| [1] |
China Environmental Health and Safety Net. Statistical communiqué of emission sources in Guangzhou in 2022[EB/OL]. ehs.cn,2023-11-16. https://www.ehs.cn/article-22489-1.html 中国环境健康安全网. 广州市2022年排放源统计公报[EB/OL]. ehs.cn,2023-11-16. https://www.ehs.cn/article-22489-1.html
|
| [2] |
YUAN P S,ZHANG H R,CHEN X,et al. Comparison of two improved activated sludge methods in urban sewage treatment[J]. Environmental Engineering,2006,24(3):34-35. 原培胜,张洪荣,陈现明,等. 两种改良型活性污泥法在城市污水处理中的比较[J]. 环境工程,2006,24(3):34-35.
|
| [3] |
ZHOU C,YAN P,YUAN S,et al. Intelligent microscopic examination device and microscopic examination method for activated sludge microorganisms:CN201910251070.7[P]. 2024-08-14. 周仓,闫攀,袁帅,等. 一种用于活性污泥微生物的智能镜检装置及镜检方法:CN201910251070.7[P]. 2024-08-14.
|
| [4] |
Wu S,XU Y,ZHAO D N. Survey of Object Detection Based on Deep Convolutional Network[J]. 2018,31(4):335-346. 吴帅,徐勇,赵东宁. 基于深度卷积网络的目标检测综述[J]. 模式识别与人工智能,2018,31(4):335-346.
|
| [5] |
Girshick R. Fast R-CNN[J]. Computer Science,2015. DOI: 10.1109/ICCV.2015.169.
|
| [6] |
HE K,GKIOXARI G,PIOTR D,et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,202,42(2):386-397.
|
| [7] |
TERVEN J,CÓRDOVA-ESPARZA D M,ROMERO-GONZÁLEZ J A. A comprehensive review of yolo architectures in computer vision:From YOLOv1 to YOLOv8 and Yolo-Nas[J]. Machine Learning and Knowledge Extraction,2023,5(4):1680-1716.
|
| [8] |
GUO G,ZHANG Z. Road damage detection algorithm for improved YOLOv5[J]. Scientific reports,2022,12(1):15523.
|
| [9] |
ZHAO M,YU H,LI H Q,et al. Detection of fish stocks by fused with SKNet and YOLOv deep learning[J]. Journal of Dalian Fisheries University,2022,37(2):312-319. 赵梦,于红,李海清,等. 融合SKNet与YOLOv5深度学习的养殖鱼群检测[J]. 大连海洋大学学报,2022,37(2):312-319.
|
| [10] |
YANG Q S,LI W K,YANG X F,et al. Improved YOLOv5 method for detecting growth status of apple flowers[J]. Computer Engineering and Applications,2022,58(4):237-246. 杨其晟,李文宽,杨晓峰,等. 改进YOLOv5的苹果花生长状态检测方法[J]. 计算机工程与应用,2022,58(4):237-246.
|
| [11] |
SONG H B,WANG Y F,DUAN Y C,et al. Detection method of severe adhesive wheat grain based on YOLOv5-MDC Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(4):245-253. 宋怀波,王云飞,段援朝,等. 基于YOLOv5-MDC的重度粘连小麦籽粒检测方法[J]. 农业机械学报,2022(4):245-253.
|
| [12] |
WANG J,SUN Z Y,GUO P,et al. Improved leukocyte detection algorithm of YOLOv5[J]. Computer Engineering and Applications,2022,58(4):134-142. 王静,孙紫雲,郭苹,等. 改进YOLOv5的白细胞检测算法[J]. 计算机工程与应用,2022,58(4):134-142.
|
| [13] |
LIN T Y,DOLLAR P,GIRSHICK R,et al. Feature pyramid networks for object detection[J]. IEEE Computer Society,2017. DOI: 10.1109/CVPR.2017.106.
|
| [14] |
LIU S,QI L,QIN H,et al. Path aggregation network for instance segmentation[J]. IEEE,2018. DOI: 10.1109/CVPR.2018.00913..
|
| [15] |
CAO Y,XU J,LIN S,et al. GCNet:Non-local networks meet squeeze-excitation networks and beyond[C]// 2019 IEEE/CVF International Conference on Computer Vision Workshop(ICCVW). IEEE,2020. DOI: 10.1109/ICCVW.2019.00246.
|
| [16] |
HOU Q,ZHOU D,FENG J. Coordinate attention for efficient mobile network design[EB/OL]. arXiv,2021. DOI: 10.48550/arXiv.2103.02907.
|
| [17] |
TANG F,XU Z,HUANG Q,et al. DuAT:Dual-aggregation transformer network for medical image segmentation[C]// Chinese Conference on Pattern Recognition and Computer Vision(PRCV). Singapore:Springer Nature Singapore,2023:343-356.
|
| [18] |
ARTHUR D,VASSILVITSKII S. K-means++:the advantages of careful seeding[C]// Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. New Orleans,SIAM,2007:1027-1035.
|
| [19] |
IKOTUN A M,EZUGWU A E,ABUALIGAH L,et al. K-means clustering algorithms:a comprehensive review,variants analysis,and advances in the era of big data[J]. Information Sciences,2023,622:178-210.
|