中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磺胺类抗生素的生物降解研究进展

白国敏 孙寓姣 孙钰洁 任雪倩 宣元焱 刘美君 云影

白国敏, 孙寓姣, 孙钰洁, 任雪倩, 宣元焱, 刘美君, 云影. 磺胺类抗生素的生物降解研究进展[J]. 环境工程, 2025, 43(7): 112-124. doi: 10.13205/j.hjgc.202507013
引用本文: 白国敏, 孙寓姣, 孙钰洁, 任雪倩, 宣元焱, 刘美君, 云影. 磺胺类抗生素的生物降解研究进展[J]. 环境工程, 2025, 43(7): 112-124. doi: 10.13205/j.hjgc.202507013
BAI Guomin, SUN Yujiao, SUN Yujie, REN Xueqian, XUAN Yuanyan, LIU Meijun, YUN Ying. Research progress on biodegradation of sulfonamides[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(7): 112-124. doi: 10.13205/j.hjgc.202507013
Citation: BAI Guomin, SUN Yujiao, SUN Yujie, REN Xueqian, XUAN Yuanyan, LIU Meijun, YUN Ying. Research progress on biodegradation of sulfonamides[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(7): 112-124. doi: 10.13205/j.hjgc.202507013

磺胺类抗生素的生物降解研究进展

doi: 10.13205/j.hjgc.202507013
基金项目: 

国家自然科学基金项目“光合细菌处理餐厨油脂废水及高价值物质合成回收的代谢调控机制研究”(52370065)

详细信息
    作者简介:

    白国敏(2001—),女,硕士,主要研究方向为环境微生物。baiguomin905@163.com

    通讯作者:

    孙寓姣(1975—),女,教授,主要研究方向为环境生物技术。sunyujiao@bnu.edu.cn

Research progress on biodegradation of sulfonamides

  • 摘要: 磺胺类抗生素作为一种广泛应用的抗菌药物,在增强病原菌耐药性及促进耐药基因的传播方面引起了研究的日益关注。生物降解对磺胺药物的耗散具有重要作用。文章综述了磺胺类抗生素在自然中的生物降解,并对相关的磺胺活性降解微生物种类进行综述,总结纯培养物和菌群的最佳降解条件。磺胺的生物降解受多因素控制,如温度、pH、药物初始浓度和外加碳源等。优化降解的运行条件,能够提高磺胺药物的去除效率。此外,许多研究分离出不同的降解菌属中存在高度相似的基因组,可能与其降解性能对应。不同的磺胺类型与降解菌属存在多种特定的代谢途径,与其携带的基因组相关。当前,磺胺类药物生物强化原位实践较少,其代谢途径和功能基因间存在的关系有待进一步研究。
  • [1] KATZ L,BALTZ R H. Natural product discovery:past,present,and future[J]. Journal of Industrial Microbiology and Biotechnology,2016,43(2):155-176.
    [2] LI Z,ZHU Y,HU X,et al. Research progress on human health risk,internal exposure characteristics and analysis technologies of antibiotics[J]. Environmental Chemistry,2023,42(12):4051-4066.
    [3] MASTERS P A,O'BRYAN T A,ZURLO J,et al. Trimethoprim-sulfamethoxazole revisited[J]. Arch Intern Med,2003,163(4):402-410.
    [4] BARAN W,ADAMEK E,ZIEMIAŃSKA J,et al. Effects of the presence of sulfonamides in the environment and their influence on human health[J]. Journal of Hazardous Materials,2011,196:1-15.
    [5] SARMAH A K,MEYER M T,BOXALL A B A. A global perspective on the use,sales,exposure pathways,occurrence,fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere,2006,65(5):725-759.
    [6] CHEN C H,CHIOU Y C,YANG C L,et al. Biosorption and biotransformation behaviours of veterinary antibiotics under aerobic livestock wastewater treatment processes[J]. Chemosphere,2023,335:139034.
    [7] TIAN Y,LI J,TANG L,et al. Antibiotics removal from piggery wastewater by a novel aerobic-microaerobic system:Efficiency and mechanism[J]. Chemical Engineering Journal,2023,454:140265.
    [8] CHEN J,XIE S. Overview of sulfonamide biodegradation and the relevant pathways and microorganisms[J]. Science of the Total Environment,2018,640:1465-1477.
    [9] KWON J W. Mobility of veterinary drugs in soil with application of manure compost[J]. Bulletin of Environmental Contamination and Toxicology,2011,87(1):40-44.
    [10] ONDON B S,LI S,ZHOU Q,et al. Sources of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the soil:a review of the spreading mechanism and human health risks[M]//DE VOOGT P. Reviews of Environmental Contamination and Toxicology. Cham; Springer International Publishing,2021:121-153.
    [11] TEUBER M. Veterinary use and antibiotic resistance[J]. Current Opinion in Microbiology,2001,4(5):493-499.
    [12] CHEN H,JING L,TENG Y,et al. Characterization of antibiotics in a large-scale river system of China:Occurrence pattern,spatiotemporal distribution and environmental risks[J]. Science of the Total Environment,2018,618:409-418.
    [13] PRUDEN A,PEI R,STORTEBOOM H,et al. Antibiotic resistance genes as emerging contaminants:studies in northern colorado[J]. Environmental Science&Technology,2006,40(23):7445-7450.
    [14] NICOLOFF H,ANDERSSON D I. Indirect resistance to several classes of antibiotics in cocultures with resistant bacteria expressing antibiotic-modifying or-degrading enzymes[J]. J Antimicrob Chemother,2015,71(1):100-110.
    [15] VILA-COSTA M,GIOIA R,ACEñA J,et al. Degradation of sulfonamides as a microbial resistance mechanism[J]. Water Research,2017,115:309-317.
    [16] GRENNI P,ANCONA V,BARRA CARACCIOLO A. Ecological effects of antibiotics on natural ecosystems:A review[J]. Microchemical Journal,2018,136:25-39.
    [17] MA Y,MODRZYNSKI J J,YANG Y,et al. Redox-dependent biotransformation of sulfonamide antibiotics exceeds sorption and mineralization:Evidence from incubation of sediments from a reclaimed water-affected river[J]. Water Research,2021,205:117616.
    [18] NUNES O C,MANAIA C M,KOLVENBACH B A,et al. Living with sulfonamides:a diverse range of mechanisms observed in bacteria[J]. Applied Microbiology and Biotechnology,2020,104(24):10389-10408.
    [19] YU S,WANG M,HONG Y. Antibiotics in environmental media and their microbial ecological effects[J]. Acta Ecologica Sinica,2011,31(15):4437-4446.俞慎,王敏,洪有为.环境介质中的抗生素及其微生物生态效应[J].生态学报,2011,31(15):4437-4446.
    [20] REIS A C,KOLVENBACH B A,NUNES O C,et al. Biodegradation of antibiotics:The new resistance determinants-part I[J]. New Biotechnology,2020,54:34-51.
    [21] ZHANTENG S,HONGTING Z,ZHIMING X,et al. Residue accumulation,distribution,and withdrawal period of sulfamethazine and N-acetylsulfamethazine in poultry waste from broilers[J]. Chemosphere,2021,278:130420.
    [22] QIN K N,CHEN Y,LI J J,et al. Removal trends of sulfonamides and their ARGs during soil aquifer treatment and subsequent chlorination:effect of aerobic and anaerobic biodegradation[J]. Environmental Science-Water Research&Technology,2020,6(9):2331-2340.
    [23] CHEN S,TAN X,TANG S,et al. Removal of sulfamethazine and Cu2+ by Sakaguchia cladiensis A5:Performance and transcriptome analysis[J]. Science of the Total Environment,2020,746:140956.
    [24] ZHANG Y,XU J,ZHONG Z,et al. Degradation of sulfonamides antibiotics in lake water and sediment[J]. Environmental Science and Pollution Research,2013,20(4):2372-2380.
    [25] CHEN J,YANG Y,KE Y,et al. Anaerobic sulfamethoxazole-degrading bacterial consortia in antibiotic-contaminated wetland sediments identified by DNA-stable isotope probing and metagenomics analysis[J]. Environmental Microbiology,2022,24(8):3751-3763.
    [26] ZHOU L J,HAN P,ZHAO M,et al. Biotransformation of lincomycin and fluoroquinolone antibiotics by the ammonia oxidizers AOA,AOB and comammox:A comparison of removal,pathways,and mechanisms[J]. Water Research,2021,196:117003.
    [27] ZHOU L J,HAN P,YU Y,et al. Cometabolic biotransformation and microbial-mediated abiotic transformation of sulfonamides by three ammonia oxidizers[J]. Water Research,2019,159:444-453.
    [28] CHEN J,YANG Y,KE Y,et al. Sulfonamide-metabolizing microorganisms and mechanisms in antibiotic-contaminated wetland sediments revealed by stable isotope probing and metagenomics[J]. Environment International,2022,165:107332.
    [29] CHEN J,CHEN X,ZHU Y,et al. New insights into bioaugmented removal of sulfamethoxazole in sediment microcosms:degradation efficiency,ecological risk and microbial mechanisms[J]. Microbiome,2024,12(1).
    [30] XIA J,GE C,YAO H. Identification of functional microflora underlying the biodegradation of sulfadiazine-contaminated substrates by Hermetia illucens[J]. Journal of Hazardous Materials,2024,463.
    [31] WANG J,WANG S. Microbial degradation of sulfamethoxazole in the environment[J]. Applied Microbiology and Biotechnology,2018,102(8):3573-3582.
    [32] JESUS Garcia-Galan M,RODRIGUEZ-Rodriguez C E,VICENT T,et al. Biodegradation of sulfamethazine by Trametes versicolor:Removal from sewage sludge and identification of intermediate products by UPLC-QqTOF-MS[J]. Science of the Total Environment,2011,409(24):5505-5512.
    [33] RODRIGUEZ-Rodriguez C E,JELIC A,LLORCA M,et al. Solid-phase treatment with the fungus Trametes versicolor substantially reduces pharmaceutical concentrations and toxicity from sewage sludge[J]. Bioresource Technology,2011,102(10):5602-5608.
    [34] ZHUO R,YU H,YUAN P,et al. Heterologous expression and characterization of three laccases obtained from Pleurotus ostreatus HAUCC 162 for removal of environmental pollutants[J]. Journal of Hazardous Materials,2018,344:499-510.
    [35] MAYANS B,CAMACHO-Arevalo R,GARCIA-Delgado C,et al. An assessment of Pleurotus ostreatus to remove sulfonamides,and its role as a biofilter based on its own spent mushroom substrate[J]. Environmental Science and Pollution Research,2021,28(6):7032-7042.
    [36] ZHANG L,LIU Y,CHEN R,et al. Transcriptomic analysis and differentially expressed genes identification of fungi upon degradation of sulfadimethoxine[J]. Acta Scientiae Circumstantiae,2021,41(4):1366-1374.
    [37] LI Y,YANG T,LIN X,et al. Isolation,identification,and optimization of conditions for the degradation of four sulfonamide antibiotics and their metabolic pathways in Pseudomonas stutzeri strain DLY-21[J]. Heliyon,2024,10(7):e29123.
    [38] LIU X,CHEN J,LIU Y,et al. Sulfamethoxazole degradation by Pseudomonas silesiensis F6a isolated from bioelectrochemical technology-integrated constructed wetlands[J]. Ecotoxicology and Environmental Safety,2022,240:113698.
    [39] YAN H,XU L,SU J,et al. Biotransformation of sulfamethoxazole by newly isolated surfactant-producing strain Proteus mirabilis sp. ZXY4:Removal efficiency,pathways,and mechanisms[J]. Bioresource Technology,2023,385:129422.
    [40] HU S,HU H,LI W,et al. Enhanced sulfamethoxazole degradation in soil by immobilized sulfamethoxazole-degrading microbes on bagasse[J]. RSC Advances,2017,7(87):55240-55248.
    [41] CAO L,ZHANG J,ZHAO R,et al. Genomic characterization,kinetics,and pathways of sulfamethazine biodegradation by Paenarthrobacter sp. A01[J]. Environment International,2019,131(1):104961.
    [42] SARNTHIMA R,MONGKOLTHANARUK W,SANACHAI K,et al. Laccase from Streptomyces sp. CS29 and molecular insight of sulfamethoxazole degradation[J]. Biologia,2024,79(1):311-320.
    [43] DONG Z,YAN X,WANG J,et al. Mechanism for biodegradation of sulfamethazine by Bacillus cereus H38[J]. Science of the Total Environment,2022,809:152237.
    [44] DU Y,CHENG Q,QIAN M,et al. Biodegradation of sulfametoxydiazine by Alcaligenes aquatillis FA:Performance,degradation pathways,and mechanisms[J]. Journal of Hazardous Materials,2023,452:131186.
    [45] ZHANG Y B,ZHOU J,XU Q M,et al. Exogenous cofactors for the improvement of bioremoval and biotransformation of sulfamethoxazole by Alcaligenes faecalis[J]. Science of the Total Environment,2016,565:547-556.
    [46] DAI X,SU C,NONG R,et al. Performance,microbial community,and metabolism pathway in adsorption-biological coupling reactor treating sulfonamide antibiotics wastewater:Effect of influent frequency and aeration rate[J]. Journal of Water Process Engineering,2023,53:103732.
    [47] CAO X,ZHANG C,ZHANG S,et al. Simultaneous removal of sediment and water contaminants in a microbial electrochemical system with embedded active electrode by in-situ utilization of electrons[J]. Journal of Hazardous Materials,2023,443:130172.
    [48] WANG Q,WANG H,LV M,et al. Sulfamethoxazole degradation by Aeromonas caviae and co-metabolism by the mixed bacteria[J]. Chemosphere,2023,317:137882.
    [49] ZHANG Y,SONG K,ZHANG J,et al. Removal of sulfamethoxazole and antibiotic resistance genes in paddy soil by earthworms (Pheretima guillelmi):Intestinal detoxification and stimulation of indigenous soil bacteria[J]. Science of the Total Environment,2022,851:158075.
    [50] RICKEN B,FELLMANN O,KOHLER H P E,et al. Degradation of sulfonamide antibiotics by Microbacterium sp. strain BR1-elucidating the downstream pathway[J]. New Biotechnology,2015,32(6):710-715.
    [51] NAQUIN E,SOORYA H,OUBRE C,et al. Effect of sulfonamide class of antibiotics on a bacterial consortium isolated from an anaerobic digester of a sewage treatment plant[J]. Environmental Quality Management,2021,31(1):49-58.
    [52] QI M,MA X,LIANG B,et al. Complete genome sequences of the antibiotic sulfamethoxazole-mineralizing bacteria Paenarthrobacter sp. P27 and Norcardiodes sp. N27[J]. Environmental Research,2022,204:112013.
    [53] YANG L H,QIAO B,XU Q M,et al. Biodegradation of sulfonamide antibiotics through the heterologous expression of laccases from bacteria and investigation of their potential degradation pathways[J]. Journal of Hazardous Materials,2021,416:125815.
    [54] HE Y,LIU L,WANG Q,et al. Bio-degraded of sulfamethoxazole by microbial consortia without addition nutrients:Mineralization,nitrogen removal,and proteomic characterization[J]. Journal of Hazardous Materials,2024,466:133558.
    [55] YANG C W,LIU C,CHANG B V. Biodegradation of amoxicillin,tetracyclines and sulfonamides in wastewater sludge[J]. Water,2020,12(8):2147.
    [56] YANG C W,TSAI L L,CHANG B V. Anaerobic degradation of sulfamethoxazole in mangrove sediments[J]. Science of the Total Environment,2018,643:1446-1455.
    [57] YU L,WANG Y,SHAN X,et al. Harnessing Paenarthrobacter ureafaciens YL1 and Pseudomonas koreensis YL2 interactions to improve degradation of sulfamethoxazole[J]. Microorganisms,2022,10(3):648.
    [58] REIS A C,ČVANČAROVá M,LIU Y,et al. Biodegradation of sulfamethoxazole by a bacterial consortium of Achromobacter denitrificans PR1 and Leucobacter sp. GP[J]. Applied Microbiology and Biotechnology,2018,102(23):10299-10314.
    [59] JIANG B,LI A,CUI D,et al. Biodegradation and metabolic pathway of sulfamethoxazole by Pseudomonas psychrophila HA-4,a newly isolated cold-adapted sulfamethoxazole-degrading bacterium[J]. Applied Microbiology and Biotechnology,2014,98(10):4671-4681.
    [60] SUN P,LIU B,AHMED I,et al. Composting effect and antibiotic removal under a new temperature control strategy[J]. Waste Management,2022,153:89-98.
    [61] KIM S H,PARK S Y,KIM G E,et al. Effect of pH and temperature on the biodegradation of oxytetracycline,streptomycin,and validamycin A in soil[J]. Applied Biological Chemistry,2023,66(1):63.
    [62] FUKAHORI S,FUJIWARA T,ITO R,et al. pH-Dependent adsorption of sulfa drugs on high silica zeolite:Modeling and kinetic study[J]. Desalination,2011,275(1):237-242.
    [63] CHAO L,MA X,TSETSEGMAA M,et al. Response of soil microbial community composition and diversity at different gradients of grassland degradation in Central Mongolia[J]. Agriculture,2022,12(9):1430.
    [64] LIN H,SUN W,YU Q,et al. Acidic conditions enhance the removal of sulfonamide antibiotics and antibiotic resistance determinants in swine manure[J]. Environmental Pollution,2020,263.
    [65] XU H,ZHU S C,ZHANG W H,et al. Research progress on biodegradation of sulfonamide antibiotics in aerobic activated sludge systems[J]. Chinese Journal of Biotechnology,2021,37(10):3459-3474.许航,朱思橙,张文辉,等.好氧活性污泥体系中磺胺类抗生素生物降解的研究进展[J].生物工程学报,2021,37(10):3459-3474.
    [66] HU J,LI X,LIU F,et al. Comparison of chemical and biological degradation of sulfonamides:solving the mystery of sulfonamide transformation[J]. Journal of Hazardous Materials,2022,424(Pt D):127661.
    [67] WEI Z,LI W,ZHAO D,et al. Electrophilicity index as a critical indicator for the biodegradation of the pharmaceuticals in aerobic activated sludge processes[J]. Water Research,2019,160:10-17.
    [68] WANG S,YUAN R,CHEN H,et al. Anaerobic biodegradation of four sulfanilamide antibiotics:kinetics,pathways and microbiological studies[J]. Journal of Hazardous Materials,2021,416:125840.
    [69] YANG Q,GAO Y,KE J,et al. Antibiotics:An overview on the environmental occurrence,toxicity,degradation,and removal methods[J]. Bioengineered,2021,12(1):7376-7416.
    [70] ANDERSSON D I,HUGHES D. Microbiological effects of sublethal levels of antibiotics[J]. Nat Rev Microbiol,2014,12(7):465-478.
    [71] ZHU T T,SU Z X,LAI W X,et al. Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology[J]. Science of the Total Environment,2021,776:145906.
    [72] YAN R,WANG Y,LI J,et al. Determination of the lower limits of antibiotic biodegradation and the fate of antibiotic resistant genes in activated sludge:Both nitrifying bacteria and heterotrophic bacteria matter[J]. Journal of Hazardous Materials,2022,425:127764.
    [73] REIS P J M,REIS A C,RICKEN B,et al. Biodegradation of sulfamethoxazole and other sulfonamides by Achromobacter denitrificans PR1[J]. Journal of Hazardous Materials,2014,280:741-749.
    [74] GAUTHIER H,YARGEAU V,COOPER D G. Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism[J]. Science of the Total Environment,2010,408(7):1701-1706.
    [75] MULLA S I,WANG H,SUN Q,et al. Characterization of triclosan metabolism in Sphingomonas sp. strain YL-JM2C[J]. Scientific Reports,2016,6(1):21965.
    [76] MULLA S I,HU A,SUN Q,et al. Biodegradation of sulfamethoxazole in bacteria from three different origins[J]. Journal of Environmental Management,2018,206:93-102.
    [77] YAN L,LIANG B,QI M Y,et al. Degrading Characterization of the Newly Isolated Nocardioides sp. N39 for 3-Amino-5-methyl-isoxazole and the Related Genomic Information[J]. Microorganisms,2022,10(8):1496.
    [78] MAO F,LIU X,WU K,et al. Biodegradation of sulfonamides by Shewanella oneidensis MR-1 and Shewanella sp strain MR-4[J]. Biodegradation,2018,29(2):129-140.
    [79] KASSOTAKI E,BUTTIGLIERI G,FERRANDO-Climent L,et al. Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products[J]. Water Research,2016,94:111-119.
    [80] OUYANG W-Y,KüMMEL S,ADRIAN L,et al. Carbon and hydrogen stable isotope fractionation of sulfamethoxazole during anaerobic transformation catalyzed by Desulfovibrio vulgaris Hildenborough[J]. Chemosphere,2023,311:136923.
    [81] ZHENG J,WANG S,ZHOU A,et al. Efficient elimination of sulfadiazine in an anaerobic denitrifying circumstance:Biodegradation characteristics,biotoxicity removal and microbial community analysis[J]. Chemosphere,2020,252:126472.
    [82] TAPPE W,HOFMANN D,DISKO U,et al. A novel isolated Terrabacter-like bacterium can mineralize 2-aminopyrimidine,the principal metabolite of microbial sulfadiazine degradation[J]. Biodegradation,2015,26(2):139-150.
    [83] DENG Y,MAO Y,LI B,et al. Aerobic degradation of sulfadiazine by Arthrobacter spp.:kinetics,pathways,and genomic characterization[J]. Environmental Science&Technology,2016,50(17):9566-9575.
    [84] LIN S,WEI J,YANG B,et al. Bioremediation of organic pollutants by white rot fungal cytochrome P450:The role and mechanism of CYP450 in biodegradation[J]. Chemosphere,2022,301:134776.
    [85] RICKEN B,KOLVENBACH B A,BERGESCH C,et al. FMNH2-dependent monooxygenases initiate catabolism of sulfonamides in Microbacterium sp. strain BR1 subsisting on sulfonamide antibiotics[J]. Scientific Reports,2017,7(1):15783.
    [86] ZENG L,DU H,LIN X,et al. Isolation,identification and whole-genome analysis of an Achromobacter strain with a novel sulfamethazine resistance gene and sulfamethazine degradation gene cluster[J]. Bioresource Technology,2024,399:130598.
    [87] QIAN G,SHAO J,HU P,et al. From micro to macro:the role of seawater in maintaining structural integrity and bioactivity of granules in treating antibiotic-laden mariculture wastewater[J]. Water Research,2023,246(1):1.1-1.10.
    [88] JIA J,GUAN Y,CHENG M,et al. Occurrence and distribution of antibiotics and antibiotic resistance genes in Ba River,China[J]. Science of the Total Environment,2018,642:1136-1144.
    [89] SEYOUM M M,OBAYOMI O,BERNSTEIN N,et al. The dissemination of antibiotics and their corresponding resistance genes in treated effluent-soil-crops continuum,and the effect of barriers[J]. Science of the Total Environment,2022,807:9.
    [90] SHA G M,CHEN G J,CHEN T,et al. Research progress and control strategies on antibiotic resistance[J]. Chinese Journal of Microecology,2020,47(10):3369-3379.沙国萌,陈冠军,陈彤,等.抗生素耐药性的研究进展与控制策略[J].微生物学通报,2020,47(10):3369-3379.
  • 加载中
计量
  • 文章访问数:  109
  • HTML全文浏览量:  33
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-11
  • 录用日期:  2024-08-08
  • 修回日期:  2024-07-20
  • 网络出版日期:  2025-09-11

目录

    /

    返回文章
    返回