中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粉末状镧系除磷吸附剂的流化特性研究及应用

吴煜楷 王左贝 杨杰 陈民权 刘舒妍 陈晶琳 陈少华 王维 叶欣

吴煜楷, 王左贝, 杨杰, 陈民权, 刘舒妍, 陈晶琳, 陈少华, 王维, 叶欣. 粉末状镧系除磷吸附剂的流化特性研究及应用[J]. 环境工程, 2025, 43(7): 134-144. doi: 10.13205/j.hjgc.202507015
引用本文: 吴煜楷, 王左贝, 杨杰, 陈民权, 刘舒妍, 陈晶琳, 陈少华, 王维, 叶欣. 粉末状镧系除磷吸附剂的流化特性研究及应用[J]. 环境工程, 2025, 43(7): 134-144. doi: 10.13205/j.hjgc.202507015
WU Yukai, WANG Zuobei, YANG Jie, CHEN Minquan, LIU Shuyan, CHEN Jinglin, CHEN Shaohua, WANG Wei, YE Xin. Fluidization characteristics and application of powdered La adsorbent for phosphorus removal[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(7): 134-144. doi: 10.13205/j.hjgc.202507015
Citation: WU Yukai, WANG Zuobei, YANG Jie, CHEN Minquan, LIU Shuyan, CHEN Jinglin, CHEN Shaohua, WANG Wei, YE Xin. Fluidization characteristics and application of powdered La adsorbent for phosphorus removal[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(7): 134-144. doi: 10.13205/j.hjgc.202507015

粉末状镧系除磷吸附剂的流化特性研究及应用

doi: 10.13205/j.hjgc.202507015
基金项目: 

中国科学院青年创新促进会专项基金(2021302,2021305);福建物构所与城市环境所融合发展基金培育项目(RHZX-2019-003)

详细信息
    作者简介:

    吴煜楷(1998—),男,硕士,主要研究方向为水污染控制与技术。ykwu@iue.ac.cn

    通讯作者:

    叶欣(1985—),男,副研究员,主要研究方向为水污染控制与资源化。xye@iue.ac.cn

Fluidization characteristics and application of powdered La adsorbent for phosphorus removal

  • 摘要: 吸附法是处理含磷污水的重要方法之一,具备效率高、无污泥产生等优点。性能优异的除磷吸附剂多呈粉末状,直接采用常规的固定床反应器易造成短流和堵塞,还可能因床层压力过大导致反应器崩裂,影响吸附剂的吸附性能和工艺的运行稳定性。基于此,尝试以流化吸附替代固定吸附,探索流化床作为磷吸附反应器的可行性,以粉末状的镧系硅藻土复合除磷吸附剂La2(CO33@Dia为研究对象开展流化实验,通过测定吸附剂的最小流化速度、带出速度和膨胀率等流化参数,明确粉末状吸附剂的流化特性,基于Ergun方程拟合适用于粉末状吸附剂的流化参数方程,并进一步探究了上升流速对粉末状吸附剂除磷性能及流失的影响。研究结果表明:控制微流化床管径>10 mm可有效避免壁面摩擦对粉末状吸附剂流化参数测定的影响;针对粉末状吸附剂,最小流化速度和带出速度的最佳预测公式分别为基于Ergun的系数修正式与普拉诺夫斯基通用式;流化吸附实验结果表明,将上升流速控制在最小流化速度与带出速度之间,La2(CO33@Dia的平均饱和吸附量可达到最大吸附量的79.4%,吸附剂平均流失率为11.3%。研究初步论证了流化床作为磷吸附反应器的可行性,可为粉末状吸附剂的吸附工艺的拓展及实际应用提供理论指导和数据支持。
  • [1] LIU B,GAI S,LAN Y,et al. Metal-based adsorbents for water eutrophication remediation:A review of performances and mechanisms[J]. Environmental Research,2022,212(Part B):113353.
    [2] WANG C,XU B F. Methods and technological advances in phosphorus removal from wastewater[J]. Low Temperature Architecture Technology,2016,38(8):37-38.王迟,徐冰峰.污水除磷的方法以及技术进展[J].低温建筑技术,2016,38(8):37-38.
    [3] GIZAW A,ZEWGE F,KUMAR A,et al. A comprehensive review on nitrate and phosphate removal and recovery from aqueous solutions by adsorption[J]. AQUA:Water Infrastructure,Ecosystems and Society,2021,70(7):921-947.
    [4] ZHU F Y,CAKMAK E K,CETECIOGLU Z. Phosphorus recovery for circular economy:application potential of feasible resources and engineering processes in Europe[J]. Chemical Engineering Journal,2023,454:140153.
    [5] ERGUN S,ORNING A A. Fluid flow through randomly packed columns and fluidized beds[J]. Industrial and Engineering Chemistry,1949,41(6):1179-1184.
    [6] ZHANG M Z,LIU Z,ZHANG L Q,et al. Effect of activated coke diameter on SO2 adsorption in fixed-bed and entrained-flow reactors[J]. Huadian Technology,2020,42(10):22-27.张梦泽,刘志,张立强,等.粒径对活性焦固定床和气流床吸附SO2过程的影响[J].华电技术,2020,42(10):22-27.
    [7] ZHANG Y,PAN B,SHAN C,et al. Enhanced phosphate removal by nanosized hydrated La (III) oxide confined in cross-linked polystyrene networks[J]. Environmental Science&Technology,2016,50(3):1447-1454.
    [8] YANG J L,ZHANG Y A,MA S H,et al. Effect of different particle sizes of modified fly ash on phosphate adsorption performance[J]. The Chinese Journal of Process Engineering,2020,20(11):1281-1288.杨建林,张宇鳌,马淑花,等.不同粒径改性粉煤灰对磷酸根吸附性能的影响[J].过程工程学报,2020,20(11):1281-1288.
    [9] LIU Z X. Estimation of surface velocity limits in fluidized beds[J]. Pharmaceutical Design,1980(6):33-34.李仲先.流化床中表面速度界限的估计[J].医药设计,1980(6):33-34.
    [10] LIU A Z,ZHANG W Y,LI H Y,et al. Experimental study on particle characteristics of liquid-solid fluidized bed[J]. China Powder Science and Technology,2021,27(3):43-49.刘阿珍,张卫义,李汉勇,等.液-固流化床颗粒流态化特性实验研究[J].中国粉体技术,2021,27(3):43-49.
    [11] YAO D,LIU M Y,LI X N. Residence time distributions of liquid phase in gas-liquid-solid mini-fluidized bed[J]. CIESC Journal,2018,69(11):4754-4762.姚东,刘明言,李翔南.小型气-液-固流化床液相的停留时间分布[J].化工学报,2018,69(11):4754-4762.
    [12] QIE Z P,ALHASSAWI H,SUN F,et al. Characteristics and applications of micro fluidized beds (MFBs)[J]. Chemical Engineering Journal,2022,428:131330.
    [13] YANG J,CHEN J L,LI R N,et al. Facile synthesis of La2(CO3)3-diatomite composites for the continuous removal of low-concentration phosphate[J]. International Journal of Environmental Science and Technology,2022,53:1-14.
    [14] NI C J. Density measurement of substances by pycnometer method[J]. Journal of Anshan Normal University,1991(3):51-52,94.倪成锦.比重瓶法测物质密度[J].鞍山师范学院学报,1991(3):51-52,94.
    [15] LIU M F,CHEN S F,LIU Y Y,et al. Characterization of sphericity and wall thickness uniformity of thick-walled hollow microspheres[J]. High Power Laser&Particle Beams,2014,26(2):159-163.刘梅芳,陈素芬,刘一杨,等.厚壁空心微球的球形度和壁厚均匀性的表征研究[J].强激光与粒子束,2014,26(2):159-163.
    [16] CUI B,XU M G,ZHANG T,et al. The study of porosity under constant temperature[J]. Gold,2006(1):21-24.崔波,许梦国,张滔,等.恒温状态下孔隙度的相关研究[J].黄金,2006(1):21-24.
    [17] Editorial Board of Methods for Monitoring and Analysis of Water and Wastewater. Methods for Monitoring and Analysis of Water and Wastewater[M]. 4th Ed. Beijing:China Environmental Science Press,2002:246-248.《水和废水监测分析方法》编委会.水和废水监测分析方法[M].四版.北京:中国环境科学出版社,2002:246-248.
    [18] LI X,LIU M,LI Y. Hydrodynamic behavior of liquid-solid micro-fluidized beds determined from bed expansion[J]. Particuology,2018,38:103-112.
    [19] PRELLBERG T,OWCZAREK A L. Pseudo-first-order transition in interacting self-avoiding walks and trails[J]. Computer Physics Communications,2002,147(1/2):629-632.
    [20] ZHANG Y F,DUAN N,WU K M,et al. Performance of diatomite-zeolite complex absorbent for phosphorus adsorption from aqueous solution[J]. Bulletin of the Chinese Ceramic Society,2013,32(7):1420-1426.张银凤,段宁,吴克明,等.硅藻土-沸石复合吸附剂对水中磷的吸附性能研究[J].硅酸盐通报,2013,32(7):1420-1426.
    [21] LI Q,DUAN H Y,GAO J Q,et al. Research on phosphorus removal performance of portland blast furnace slag cement[J]. Journal of Zhengzhou University (Engineering Science),2022,43(3):73-80.李强,段浩宇,高镜清,等.矿渣硅酸盐水泥除磷性能研究[J].郑州大学学报(工学版),2022,43(3):73-80.
    [22] BACELO H,PINTOR A M A,SANTOS S C R,et al. Performance and prospects of different adsorbents for phosphorus uptake and recovery from water[J]. Chemical Engineering Journal,2020,381:122566.
    [23] ZIVKOVIC V,BIGGS M J,ALWAHABI Z T. Experimental study of a liquid fluidization in a microfluidic channel[J]. AIChE Journal,2013,59(2):361-364.
    [24] ZHANG W Y,CHEN H,FANG C J. Improved calculation equation of the minimum fluidization velocity for solid-liquid fluidization system[J]. Petro-Chemical Equipment,2011,40(1):5-9.张卫义,陈罕,方陈靖.液-固流态化最小流态化速度计算方法改进[J].石油化工设备,2011,40(1):5-9.
    [25] WEN C Y,YU Y H. Mechanics of fluidization[J]. Chemical Engineering Progress Symposium Series,1966,62:100-111.
    [26] BOURGEOIS P,GRENIER P. The ratio of terminal velocity to minimum fluidising velocity for spherical particles[J]. The Canadian Journal of Chemical Engineering,1968,46(5):325-328.
    [27] SAXENA S C,VOGEL G J. The measurement of incipient fluidization velocities in a bed of coarse dolomite at temperature and pressure[J]. Transactions of the Institution of Chemical Engineers,1977,55:184.
    [28] NAKAMURA M,HAMADA Y,TOYAMA S,et al. An experimental investigation of minimum fluidization velocity at elevated temperatures and pressures[J]. The Canadian Journal of Chemical Engineering,1985,63(1):8-13.
    [29] ZHENG Z,YAMAZAKI R,JIMBO G. Minimum fluidization velocity of large particles at elevated-temperatures[J]. Kagaku Kogaku Ronbunshu,1985,11:115-117
    [30] TANG C,LIU M,LI Y. Experimental investigation of hydrodynamics of liquid-solid mini-fluidized beds[J]. Particuology,2016,27:102-109.
    [31] ZOU D L,ZHOU Y. Research on the minimum fluidizing velocity of pyrite ore[J]. Journal of Jilin Institute of Chemical Technology,1997(3):21-23.邹东雷,周游.硫铁矿物料最小流化速度的研究[J].吉林化工学院学报,1997(3):21-23.
    [32] DING D C. Engineering calculation of critical velocity and settling velocity of granular materials[J]. S P&BMH Related Engineer,2009(5):1-7,51.丁德承.颗粒物料临界速度和沉降速度的工程计算[J].硫磷设计与粉体工程,2009(5):1-7,51.
    [33] ZHAO H. Modulating the residence time and distribution of particles with different sizes in fluidized bed[D]. Beijing:University of Chinese Academy of Sciences (Institute of Process Engineering,Chinese,Academy of Sciences),2017.赵虎.流化床中不同粒径颗粒停留时间及其分布的调控研究[D].北京:中国科学院大学(中国科学院过程工程研究所),2017.
    [34] GONG M Y,LI X G,DU W,et al. Research progress on fluid catalyst attrition[J]. Tribology,2007,117(1):91-96.公铭扬,李晓刚,杜伟,等.流化催化剂磨损机制的研究进展[J].摩擦学学报,2007,117(1):91-96.
    [35] WANG J,WANG Y,HUANG X,et al. Adsorption dynamics and breakthrough characteristics based on the fluidization condition[J]. Environmental Science,2014,35(2):678-683.王君,王瑶,黄星,等.基于流态化作用的吸附反应动力学和穿透特征[J].环境科学,2014,35(2):678-683.
  • 加载中
计量
  • 文章访问数:  73
  • HTML全文浏览量:  23
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-20
  • 录用日期:  2024-08-02
  • 修回日期:  2024-06-22
  • 网络出版日期:  2025-09-11

目录

    /

    返回文章
    返回