中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于复合酶制剂水解的餐厨垃圾多路径资源化研究进展及展望

刘雨 安磊 张晓媛 王志强 万俊锋 汪群慧

刘雨, 安磊, 张晓媛, 王志强, 万俊锋, 汪群慧. 基于复合酶制剂水解的餐厨垃圾多路径资源化研究进展及展望[J]. 环境工程, 2025, 43(10): 1-13. doi: 10.13205/j.hjgc.202510001
引用本文: 刘雨, 安磊, 张晓媛, 王志强, 万俊锋, 汪群慧. 基于复合酶制剂水解的餐厨垃圾多路径资源化研究进展及展望[J]. 环境工程, 2025, 43(10): 1-13. doi: 10.13205/j.hjgc.202510001
LIU Yu, AN Lei, ZHANG Xiaoyuan, WANG Zhiqiang, WAN Junfeng, WANG Qunhui. Multi-pathway resource recovery from food waste via hydrolysis with compound enzymes: current progress and future perspectives[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(10): 1-13. doi: 10.13205/j.hjgc.202510001
Citation: LIU Yu, AN Lei, ZHANG Xiaoyuan, WANG Zhiqiang, WAN Junfeng, WANG Qunhui. Multi-pathway resource recovery from food waste via hydrolysis with compound enzymes: current progress and future perspectives[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(10): 1-13. doi: 10.13205/j.hjgc.202510001

基于复合酶制剂水解的餐厨垃圾多路径资源化研究进展及展望

doi: 10.13205/j.hjgc.202510001
基金项目: 

国家自然科学基金项目“厨余垃圾发酵联产乙醇和乳酸的耦合代谢及抑制解除机制研究”(52470137);河南省重点研发专项项目“餐厨垃圾低碳高值资源循环利用关键技术与装备研发”(241111321400)

详细信息
    作者简介:

    刘雨(1964—),男,教授,主要研究方向为污废水及固废处理及资源化。cyliu@nankai.edu.cn

    通讯作者:

    张晓媛(1991—),女,副教授,主要研究方向为先进生物技术和环境功能材料。zhangxiaoyuan@nankai.edu.cn

Multi-pathway resource recovery from food waste via hydrolysis with compound enzymes: current progress and future perspectives

  • 摘要: 当前,如何在实现高效减量的同时实现资源化利用,已成为餐厨垃圾处理技术发展的核心诉求。焚烧、堆肥等主流工艺虽能实现部分处理处置目标,但难以在处理效率、运行成本和环境友好性之间取得理想平衡,因此亟需开发兼具高效、低成本和绿色可持续性的创新型资源化技术。在多种技术路径中,水解处理被视为提升餐厨垃圾资源化效率的关键步骤,而生物酶技术因其水解效率高、反应条件温和等优势,展现出广阔的应用前景。针对餐厨垃圾有机组分复杂的特点,复合酶(如碳水化合物酶、蛋白酶、脂肪酶等)的协同作用能够实现更高效的水解,但酶制剂成本仍是制约其大规模推广的关键瓶颈。利用餐厨垃圾自身作为底物进行原位生产复合酶制剂,被认为是降低酶制剂成本、提高整体资源化水平的可行策略。系统综述了复合酶处理技术在餐厨垃圾处理中的研究进展,重点分析复合酶制剂的生产与改良策略,并探讨其在厌氧消化、与剩余污泥共处理、有机肥转化及生物发酵等集成工艺中的协同效应和工程可行性。同时,评估在现有餐厨垃圾处理设施中引入复合酶制剂技术的改造潜力,并分析与剩余污泥协同处理的应用前景。最后,对酶制剂性能优化、新型反应器研发、机器学习辅助设计及环境影响评价等未来方向进行展望,以期推动该技术走向规模化、系统化应用,构建城市有机固废低碳、低成本、高能源回收效率的闭环处理路径。
  • [1] LIU F,SU Y,CHEN Y. Composition analysis and resource route selection of food waste from different regions of China[J]. Resources,Conservation and Recycling,2025,223:108529.
    [2] DONG C Y,GU X,ZHAO L,et al. Research progress on anaerobic biological conversion pre-treatment technology for food waste[J]. Environmental Sanitation Engineering,2023,31(3):24-32. 董成耀,顾霞,赵磊,等. 餐厨垃圾厌氧生物转化预处理技术研究进展[J]. 环境卫生工程,2023,31(3):24-32.
    [3] SHUKLA K A.,SOFIAN A D A BIN ABU,SINGH A,et al. Food waste management and sustainable waste to energy:Current efforts,anaerobic digestion,incinerator and hydrothermal carbonization with a focus in Malaysia[J]. Journal of Cleaner Production,2024,448:141457.
    [4] SU G,ZHANG C,LI Y. Resource-energy-environment nexus in converting food waste to biobutanol:Potential for resource recovery,energy security,and greenhouse gas mitigation[J]. Renewable and Sustainable Energy Reviews,2025,218:115781.
    [5] XIE T,ZHANG Z,SUN M,et al. Effect of hydrothermal pretreatment on the degrease performance and liquid substances transformation of kitchen waste[J]. Environmental Research,2022,205:112537.
    [6] HE K,LIU Y,TIAN L,et al. Review in anaerobic digestion of food waste[J]. Heliyon,2024,10(7):e28200.
    [7] ZHANG M,SU R,QI W,et al. Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes[J]. Applied Biochemistry and Biotechnology,2010,160(5):1407-1414.
    [8] DHARMA PATRIA R,REHMAN S,VUPPALADADIYAM A K,et al. Bioconversion of food and lignocellulosic wastes employing sugar platform:A review of enzymatic hydrolysis and kinetics[J]. Bioresource Technology,2022,352:127083.
    [9] MARZO-GAGO C,UNGER P,SCHNEIDER R,et al. Valorising pasta industry wastes by the scale up and integration of solid-state and liquid-submerged fermentations[J]. Bioresource Technology,2024,391:129909.
    [10] UÇKUN KIRAN E,TRZCINSKI A P,LIU Y. Enhancing the hydrolysis and methane production potential of mixed food waste by an effective enzymatic pretreatment[J]. Bioresource Technology,2015,183:47-52.
    [11] HUANG M,LIU S,YAN Y,et al. Unraveling the role of organic solid wastes in microbial lipids production:from components-mediated oleaginous yeast growth impact to integrated resource-utilization strategy[J]. Bioresource Technology,2025,435.
    [12] LI X,METTU S,MARTIN G J O,et al. Ultrasonic pretreatment of food waste to accelerate enzymatic hydrolysis for glucose production[J]. Ultrasonics Sonochemistry,2019,53:77-82.
    [13] SUN Z,LI M,QI Q,et al. Mixed food waste as renewable feedstock in succinic acid fermentation[J]. Applied Biochemistry and Biotechnology,2014,174(5):1822-1833.
    [14] ZHANG S,ZOU L,WAN Y,et al. Using an expended granular sludge bed reactor for advanced anaerobic digestion of food waste pretreated with enzyme:The feasibility and its performance[J]. Bioresource Technology,2020,311:123504.
    [15] WANG K J,WANG J Y,ZUO J E,et al. Analysis and Suggestions of the current status of anaerobic treatment technology for food waste in China[J]. Chinese Journal of Environmental Engineering,2020,14(7):1735-1742. 王凯军,王婧瑶,左剑恶,等. 我国餐厨垃圾厌氧处理技术现状分析及建议[J]. 环境工程学报,2020,14(7):1735-42.
    [16] CUI Q,SUN Y,CHENG J,et al. Effect of two-step enzymatic hydrolysis on the antioxidant properties and proteomics of hydrolysates of milk protein concentrate[J]. Food Chemistry,2022,366:130711.
    [17] MENG Y,LUAN F,YUAN H,et al. Enhancing anaerobic digestion performance of crude lipid in food waste by enzymatic pretreatment[J]. Bioresource Technology,2017,224:48-55.
    [18] MENG Y,LI S,YUAN H,et al. Effect of lipase addition on hydrolysis and biomethane production of Chinese food waste[J]. Bioresource Technology,2015,179:452-9.
    [19] BHATTACHARYA A S,BHATTACHARYA A,PLETSCHKE B I. Synergism of fungal and bacterial cellulases and hemicellulases:a novel perspective for enhanced bio-ethanol production[J]. Biotechnology Letters,2015,37(6):1117-29.
    [20] ZHANG C S,FAN S Y,LENG Z Z,et al. The mechanism of the hydrolysis for fruit and vegetable waste and the ethanol fermentation performance of the hydrolysate fluid[J]. Chemical Industry and Engineering Progress,1-10[ 2025-11-03]. https://doi.org/10.16085/j.issn.1000-6613.2024-2102. 张存胜,凡思怡,冷忠战,等. 果蔬废弃物水解过程机理及水解液乙醇发酵性能[J/OL]. 化工进展,1-10[ 2025-11-03]. https://doi.org/10.16085/j.issn.1000-6613.2024-2102.
    [21] WU M,WANG H. Re-considering and designing microbiomes for future waste biorefinery[J]. Microbial Biotechnology,2024,17(1):e14395.
    [22] KHASWAL A,MISHRA S K,CHATURVEDI N,et al. Microbial enzyme production:Unlocking the potential of agricultural and food waste through solid-state fermentation[J]. Bioresource Technology Reports,2024,27:101880.
    [23] MA Y,LIU S,CUI L,et al. Turning food waste to microbial lipid towards a superb economic and environmental sustainability:An innovative integrated biological route[J]. Environmental Research,2024,255:119125.
    [24] ARYA P S,YAGNIK S M,RAJPUT K N,et al. Valorization of agro-food wastes:Ease of concomitant-enzymes production with application in food and biofuel industries[J]. Bioresource Technology,2022,361:127738.
    [25] TRIPATHI M,LAL B,SYED A,et al. Production of fermentable glucose from bioconversion of cellulose using efficient microbial cellulases produced from water hyacinth waste[J]. International Journal of Biological Macromolecules,2023,252:126376.
    [26] LIU X R,LIAN X W,ZHU M J. Study on properties of α-amylase from Aspergillus oryzae 1228[J]. China Condiment,2009,34(4):36-38. 刘晓蓉,连晓蔚,朱美娟. 米曲霉1228产α-淀粉酶特性的研究[J]. 中国调味品,2009,34(4):36-38.
    [27] XIAO C. Isolation of RSGA-producing strain Aspergillus niger(6#)and its enzyme producing conditions[J]. Chinese Journal of Applied and Environmental Biology,2006,12(1):76.
    [28] XUAN J,MENG G,RONGXIA Y. Preparation of Enzyme-Rich Products from Kitchen Waste by Aspergillus oryzae Fermentation[J]. Research of Environmental Sciences,2022,35:828-835.
    [29] BANSAL N,TEWARI R,SONI R,et al. Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues[J]. Waste Management,2012,32(7):1341-1346.
    [30] TIAN M,WAI A,GUHA T K,et al. Production of endoglucanase and xylanase using food waste by solid-state fermentation[J]. Waste and Biomass Valorization,2018,9(12):2391-2398.
    [31] CHEN J,CUI L,YAN Y,et al. In situ preparation of oriented microbial consortium-based compound enzyme strengthens food waste disintegration and anaerobic digestion:Performance,mechanism,microbial communities and global metabolic pathways[J]. Chemical Engineering Journal,2024,486:150208.
    [32] SANDHYA C,SUMANTHA A,SZAKACS G,et al. Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation[J]. Process Biochemistry,2005,40(8):2689-1694.
    [33] ZHUANG J,MARCHANT M A.,NOKES S E.,et al. Economic analysis of cellulase production methods for bio-ethanol[J]. Applied Engineering in Agriculture,2007,23(5):679-687.
    [34] MA Y,CAI W,LIU Y. An integrated engineering system for maximizing bioenergy production from food waste[J]. Applied Energy,2017,206:83-89.
    [35] MELIKOGLU M,LIN C S K,WEBB C. Stepwise optimisation of enzyme production in solid state fermentation of waste bread pieces[J]. Food and Bioproducts Processing,2013,91(4):638-646.
    [36] CUI L,CHEN J,YAN Y,et al. Development of oriented microbial consortium-based compound enzyme strengthens food waste hydrolysis and antibiotic resistance genes removal:Deciphering of performance,metabolic pathways and microbial communities[J]. Environmental Research,2024,262:119973.
    [37] CHEN J X,YAN Y M,LIU S M,et al. Ultrasound combined with enzymatic pretreatment enhances anaerobic digestion of food waste[J]. China Environmental Science,2025,45(1):223-233. 陈佳新,延一鸣,刘诗漫,等. 超声波联合酶预处理强化餐厨垃圾厌氧消化[J]. 中国环境科学,2025,45(1):223-233.
    [38] YAN Y,CHEN J,CUI L,et al. Development of oriented multi-enzyme strengthens waste activated sludge disintegration and anaerobic digestion:Performance,components transformation and microbial communities[J]. Journal of Environmental Management,2024,365:121614.
    [39] ISHAQ R,ZAFAR M,ANWAR Z,et al. Hyper-production and characterization of exoglucanase through physical,chemical,and combined mutagenesis in indigenous strain of thermophilic Aspergillus fumigatus[J]. Applied Biochemistry and Biotechnology,2025,197(6):4002-4024.
    [40] IRFAN M,JAVED J,SYED Q. UV mutagenesis of Aspergillus niger for enzyme production in submerged fermentation[J]. Pakistan Journal of Biochemistry & Molecular Biology,2011,44:137-140.
    [41] LI X H,YANG H J,ROY B,et al. Enhanced cellulase production of the Trichoderma viride mutated by microwave and ultraviolet[J]. Microbiological Research,2010,165(3):190-198.
    [42] QIN S,ZHOU M,WANG Z,et al. Effect of pulsed electric field on spore germination rate and enzyme activity of Aspergillus niger[J]. Innovative Food Science & Emerging Technologies,2023,89:103473.
    [43] LIN S,JIANG H,FU Q,et al. Effects of pulsed light on mycelium growth and conidiation in Aspergillus oryzae[J/OL] 2023,9(7):10.3390/fermentation9070674.
    [44] LI L X,YU L Y,WANG B,et al. Impact of overexpressing NADH kinase on glucoamylase production in Aspergillus niger[J]. Journal of Industrial Microbiology and Biotechnology,2022,49(4):kuac015.
    [45] CHEN X,PAN B,YU L,et al. Enhancement of protein production in Aspergillus niger by engineering the antioxidant defense metabolism[J]. Biotechnology for Biofuels and Bioproducts,2024,17(1). DOI: 10.1186/s13068-024-02542-0.
    [46] FU Y,RAO Y,LIAO Y,et al. Protein engineering,expression optimization,and application of alkaline protease from Alkalihalobacillus clausii FYX[J]. International Journal of Biological Macromolecules,2025,307:141891.
    [47] ZENG F,LIU Y,LIU D,et al. Enhancing alkaline protease production in Bacillus amyloliquefaciens via surfactin-mediated mechanisms and metabolic engineering[J]. Bioresource Technology,2025,433:132702.
    [48] SHARMA P,MONDAL K,TAMANG S,et al. A malto-oligosaccharide forming thermostable acidic α-amylase from Bacillus stercoris YSP18 isolated from sediment of Sikkim hot spring:heterologous expression and characterisation[J]. Systems Microbiology and Biomanufacturing,2025,5(1):185-202.
    [49] AN X,DING C,ZHANG H,et al. Overexpression of amyA and glaA substantially increases glucoamylase activity in Aspergillus niger[J]. Acta Biochimica et Biophysica Sinica,2019,51(6):638-644.
    [50] ZHANG S,ZHAO P,WANG W Q,et al. The influence of power supply on the electrochemical anaerobic digestion of food waste[J]. Environmental Engineering,2025,11.2097.X. 20250530.1326. 004. 章爽,赵盼,王万清,等. 不同施电方式对餐厨垃圾电化学厌氧消化的影响[J/OL]. 环境工程,1-10[ 2025-11-03]. https://link.cnki.net/urlid/11.2097.X.20250530.1326.004.
    [51] MA Y,YIN Y,LIU Y. A holistic approach for food waste management towards zero-solid disposal and energy/resource recovery[J]. Bioresource Technology,2017,228:56-61.
    [52] XIN X,MA Y,LIU Y. Electric energy production from food waste:Microbial fuel cells versus anaerobic digestion[J]. Bioresource Technology,2018,255:281-287.
    [53] Lü F,ZHANG H,SHAO L,et al. Problems of anaerobic digestion process to deal with food waste and its countermeasures through material flow analysis[J]. Environmental Sanitation En⁃ gineering,2017,25(1):1-9.
    [54] YIN Z,WANG J,WANG M,et al. Application and improvement methods of sludge alkaline fermentation liquid as a carbon source for biological nutrient removal:A review[J]. Science of the Total Environment,2023,873:162341.
    [55] ZHANG M,WANG X,ZHANG D,et al. Food waste hydrolysate as a carbon source to improve nitrogen removal performance of high ammonium and high salt wastewater in a sequencing batch reactor[J]. Bioresource Technology,2022,349:126855.
    [56] GUI X,LI Z,WANG Z. Kitchen waste hydrolysate enhances sewage treatment efficiency with different biological process compared with glucose[J]. Bioresource Technology,2021,341:125904.
    [57] AN L,ZHANG X,LU J,et al. Valorization of food waste to biofertilizer and carbon source for denitrification with assistance of plant ash and biochar toward zero solid discharge[J]. Bioresource Technology,2025,420:132119.
    [58] GAO J,LI J,WANG F,et al. Continuously applying kitchen waste fertiliser more strongly promotes microbial-derived carbon accumulation in mineral-associated organic carbon than other fertilisers across the paddy soil profile in the Yangtze River Delta,China[J]. Soil and Tillage Research,2025,253:106614.
    [59] CHEN Z,ZHANG S,LI Y,et al. Effects and mechanisms of kitchen waste organic fertilizers application on soil nitrogen transformation,plant pathogenic virulence genes,and metabolites[J]. Chemical Engineering Journal,2024,496:154125.
    [60] JIANG Y,ZHANG X,AN L,et al. A novel biochar-augmented enzymatic process for conversion of food waste to biofertilizers:Planting trial with leafy vegetable[J]. Bioresource Technology,2024,399:130554.
    [61] MA Y,LIU Y. Turning food waste to energy and resources towards a great environmental and economic sustainability:An innovative integrated biological approach[J]. Biotechnology Advances,2019,37(7):107414.
    [62] DU R,CUI L,FENG Y,et al. Enhancing the decomposition and composting of food waste by in situ directional enzymatic hydrolysis:performance,ARGs removal and engineering application[J]. Waste Management,2025,200:114774.
    [63] CHEN X,ZHENG X,PEI Y,et al. Process design and techno-economic analysis of fuel ethanol production from food waste by enzymatic hydrolysis and fermentation[J]. Bioresource Technology,2022,363:127882.
    [64] GAO Y,WEI D D." Declare War on Food Waste":A documentary on the industrialization of the"combined biological processing technology for food waste" by Professor Liu Renhuai's Team[J]. Innovation in Science and Technology and Branding,2019(2):8-13. 高妍,韦斗斗. 向餐厨垃圾“宣战”:刘人怀院士团队“餐厨垃圾联合生物加工处理技术”产业化落地纪实[J]. 科技创新与品牌,2019(2):8-13.
    [65] UçKUN Kiran E,Liu Y. Bioethanol production from mixed food waste by an effective enzymatic pretreatment[J]. Fuel,2015,159:463-469.
    [66] XU Y,WANG X,LI Z,et al. Potential of food waste hydrolysate as an alternative carbon source for microbial oil synthesis[J]. Bioresource Technology,2022,344:126312.
    [67] CARMONA-CABELLO M,GARCíA I L,PAPADAKI A,et al. Biodiesel production using microbial lipids derived from food waste discarded by catering services[J]. Bioresource Technology,2021,323:124597.
    [68] MA X,GAO Z,GAO M,et al. Microbial lipid production from food waste saccharified liquid and the effects of compositions[J]. Energy Conversion and Management,2018,172:306-315.
    [69] GAO Z,MA Y,MA X,et al. A novel variable pH control strategy for enhancing lipid production from food waste:Biodiesel versus docosahexaenoic acid[J]. Energy Conversion and Management,2019,189:60-66.
    [70] ZHANG Z,O’HARA I M,MUNDREE S,et al. Biofuels from food processing wastes[J]. Current Opinion in Biotechnology,2016,38:97-105.
    [71] REN H Y,LIU B F,KONG F,et al. Favorable energy conversion efficiency of coupling dark fermentation and microalgae production from food wastes[J]. Energy Conversion and Management,2018,166:156-162.
    [72] HAN W,YE M,ZHU A J,et al. Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production[J]. Bioresource Technology,2015,191:24-29.
    [73] ZHANG C,DUAN N N,ZHAO S Q,et al. Technology selection and development trends for municipal multi-source sludge treatment and disposal under the dual-carbon goals[J]. Environmental Engineering,2025,43(7):1-9. 张辰,段妮娜,赵水钎,等. 双碳目标下城市多源污泥处理处置技术选择与发展趋势[J]. 环境工程,2025,43(7):1-9.
    [74] YIN Y,LIU Y J,MENG S J,et al. Enzymatic pretreatment of activated sludge,food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion[J]. Applied Energy,2016,179:1131-1137.
    [75] MA Y,YIN Y,LIU Y. New insights into co-digestion of activated sludge and food waste:Biogas versus biofertilizer[J]. Bioresource Technology,2017,241:448-453.
    [76] Xiangyang:Integrated treatment of sludge and food waste for full resource utilization and zero emissions[J]. China Construction Information,2014(23):21-22. 襄阳:污泥餐厨垃圾协同处理资源全利用实现零排放[J]. 中国建设信息,2014(23):21-2.
    [77] HUANG H W,XU F. Zhenjiang piloted the co-treatment of food waste and excess sludge[J]. Environmental Sanitation Engineering,2015,23(1):7-10. 黄宏伟,许烽. 镇江市试点餐厨垃圾和污泥协同处理[J]. 环境卫生工程,2015,23(1):7-10.
  • 加载中
计量
  • 文章访问数:  19
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-10-04
  • 录用日期:  2025-10-15
  • 修回日期:  2025-10-10
  • 网络出版日期:  2025-12-03
  • 刊出日期:  2025-10-01

目录

    /

    返回文章
    返回