中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

能耗视角下挥发性有机物催化氧化技术述评

易天立 田俊泰 刘月 聂紫萌 王紫薇 赵晓雅 乔飞扬 叶代启

易天立, 田俊泰, 刘月, 聂紫萌, 王紫薇, 赵晓雅, 乔飞扬, 叶代启. 能耗视角下挥发性有机物催化氧化技术述评[J]. 环境工程, 2025, 43(10): 112-120. doi: 10.13205/j.hjgc.202510013
引用本文: 易天立, 田俊泰, 刘月, 聂紫萌, 王紫薇, 赵晓雅, 乔飞扬, 叶代启. 能耗视角下挥发性有机物催化氧化技术述评[J]. 环境工程, 2025, 43(10): 112-120. doi: 10.13205/j.hjgc.202510013
YI Tianli, TIAN Juntai, LIU Yue, NIE Zimeng, WANG Ziwei, ZHAO Xiaoya, QIAO Feiyang, YE Daiqi. Review of catalytic oxidation technology of volatile organic compounds from the perspective of energy consumption[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(10): 112-120. doi: 10.13205/j.hjgc.202510013
Citation: YI Tianli, TIAN Juntai, LIU Yue, NIE Zimeng, WANG Ziwei, ZHAO Xiaoya, QIAO Feiyang, YE Daiqi. Review of catalytic oxidation technology of volatile organic compounds from the perspective of energy consumption[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(10): 112-120. doi: 10.13205/j.hjgc.202510013

能耗视角下挥发性有机物催化氧化技术述评

doi: 10.13205/j.hjgc.202510013
详细信息
    作者简介:

    易天立(1993—),男,博士研究生,主要研究方向为大气污染控制。861192351@qq.com

    通讯作者:

    叶代启(1965—),男,博士,教授,主要研究方向为大气环境与污染控制。cedqye@scut.edu.com

Review of catalytic oxidation technology of volatile organic compounds from the perspective of energy consumption

  • 摘要: 在“双碳”战略背景下,高效、经济、低能耗的挥发性有机物(VOCs)催化氧化技术是国家重大需求。聚焦于VOCs热催化氧化和非热催化氧化技术的能耗,总结了热催化氧化芳香烃、脂肪烃、含氧VOCs以及含氯、氮、硫VOCs的能耗特征,概述了等离子体催化氧化、光催化氧化、光热催化氧化、臭氧催化氧化等非热催化氧化技术的能耗现状。结果表明,含氯、氮、硫VOCs难以实现常温催化燃烧,研究者应着眼于提高产物选择性,避免有毒副产物的生成;芳香烃催化燃烧温度距离常温仍有较大差距,含氧VOCs和脂肪烃未来有望实现低温或近常温催化燃烧;与不同的非热催化氧化技术相比,热催化氧化技术的平均比摩尔能耗最低。热催化氧化技术仍然是未来工业销毁VOCs的主流技术,非热催化氧化技术因在特定场景下具有独特优势,地会占据一席之地。
  • [1] MCFIGGANS G,MENTEL T F,WILDT J,et al. Secondary organic aerosol reduced by mixture of atmospheric vapours[J]. Nature,2019,565(7741):587-593.
    [2] REN Y,DONG C,SONG C,et al. Spinel-based catalysts that enable catalytic oxidation of volatile organic compounds[J]. Environmental Science & Technology,2024,58(47):20785-20811.
    [3] LU T,ZHANG C,Du F,et al. Mutual inhibition effects on the synchronous conversion of benzene,toluene,and xylene over MnOx catalysts[J]. Journal of Colloid and Interface Science,2023,641:791-802.
    [4] LI M,ZHANG W,ZHANG X,et al. Influences of different surface oxygen species on oxidation of toluene and/or benzene and their reaction pathways over Cu-Mn metal oxides[J]. Journal of Colloid and Interface Science,2023,630:301-316.
    [5] YUAN J,LI G,LIU X,et al. Catalytic oxidation of BTX(benzene,toluene,and xylene)using metal oxide perovskites[J]. Advanced Functional Materials,2024,34(36):2401281.
    [6] GUO Y,WEN M,LI G,et al. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts:a critical review[J]. Applied Catalysis B:Environmental,2021,281:119447.
    [7] TANG W,XIAO W,WANG S,et al. Boosting catalytic propane oxidation over PGM-free Co3O4 nanocrystal aggregates through chemical leaching:A comparative study with Pt and Pd based catalysts[J]. Applied Catalysis B:Environmental,2018,226:585-595.
    [8] HARTIKAINEN A,YLI-PIRILÄ P,TIITTA P,et al. Volatile organic compounds from logwood combustion:emissions and transformation under dark and photochemical aging conditions in a smog chamber[J]. Environmental Science & Technology,2018,52(8):4979-4988.
    [9] FANG Y,LI L,YANG J,et al. Engineering the nucleophilic active oxygen species in CuTiO x for efficient low-temperature propene combustion[J]. Environmental Science & Technology,2020,54(23):15476-15488.
    [10] LIU G,MA X,LI W,et al. Pollution characteristics,source appointment and environmental effect of oxygenated volatile organic compounds in Guangdong-Hong Kong-Macao Greater Bay Area:implication for air quality management[J]. Science of the Total Environment,2024,919:170836.
    [11] MO Z,HUANG S,YUAN B,et al. Tower-based measurements of NMHCs and OVOCs in the Pearl River delta:vertical distribution,source analysis and chemical reactivity[J]. Environmental Pollution,2022,292:118454.
    [12] LI J,XIE X,LI L,et al. Fate of oxygenated volatile organic compounds in the Yangtze River delta region:source contributions and impacts on the atmospheric oxidation capacity[J]. Environmental Science & Technology,2022,56(16):11212-11224.
    [13] ZHANG K,DING H,PAN W,et al. Research progress of a composite metal oxide catalyst for VOC degradation[J]. Environmental Science & Technology,2022,56(13):9220-9236.
    [14] HE D,HAO H,CHEN D,et al. Effects of rare-earth(Nd,Er and Y)doping on catalytic performance of HZSM-5 zeolite catalysts for methyl mercaptan(CH3SH)decomposition[J]. Applied Catalysis A:General,2017,533:66-74.
    [15] YANY C,MIAO G,PI Y,et al. Abatement of various types of VOCs by adsorption/catalytic oxidation:A review[J]. Chemical Engineering Journal,2019,370:1128-1153.
    [16] WANG S H. Petrochemical engineering design handbook. Volume 1:Basic data for petrochemical engineering[M]. Beijing:Chemical Industry Press,2002. 王松汉,石油化工设计手册. 第1卷,石油化工基础数据[M]. 北京:化学工业出版社,2002.
    [17] SU Z,LI X,SI W,et al. Probing the actual role and activity of oxygen vacancies in toluene catalytic oxidation:evidence from in situ XPS/NEXAFS and DFT + U calculation[J]. ACS Catalysis,2023,13(6):3444-3455.
    [18] LU A,SUN H,ZHANG N,et al. Surface partial-charge-tuned enhancement of catalytic activity of platinum nanocatalysts for toluene oxidation[J]. ACS Catalysis,2019,9(8):7431-7442.
    [19] SU Z,YANG W,WANG C,et al. Roles of oxygen vacancies in the bulk and surface of CeO2 for toluene catalytic combustion[J]. Environmental Science & Technology,2020,54(19):12684-12692.
    [20] SHEN Y,DENG J,IMPENG S,et al. Boosting toluene combustion by engineering Co-O strength in cobalt oxide catalysts[J]. Environmental Science & Technology,2020,54(16):10342-10350.
    [21] HAN W,DONG F,HAN W,et al. A new strategy for designing highly efficient Co3O4 catalyst with the molecular space configurations for toluene catalytic combustion[J]. Chemical Engineering Journal,2022,435:134953.
    [22] DENG H,KANG S,MA J,et al. Silver incorporated into cryptomelane-type manganese oxide boosts the catalytic oxidation of benzene[J]. Applied Catalysis B:Environmental,2018,239:214-222.
    [23] ZHANG X,LI M,CUI X,et al. Enhancing catalytic activity for toluene and acetone oxidation over Zr a Co1- a O x catalysts by doping Zr to improve the oxygen activation capacity due to formation of Zr-O-Co bonds[J]. Chemical Engineering Journal,2023,465:142857.
    [24] LUO M,CHENG Y,PENG X,et al. Copper modified manganese oxide with tunnel structure as efficient catalyst for low-temperature catalytic combustion of toluene[J]. Chemical Engineering Journal,2019,369:758-765.
    [25] PEI W,LIU Y,DENG J,et al. Partially embedding Pt nanoparticles in the skeleton of 3DOM Mn2O3:an effective strategy for enhancing catalytic stability in toluene combustion[J]. Applied Catalysis B:Environmental,2019,256:117814.
    [26] CHEN X,CHEN X,CAI S,et al. Catalytic combustion of toluene over mesoporous Cr2O3-supported platinum catalysts prepared by in situ pyrolysis of MOFs[J]. Chemical Engineering Journal,2018,334:768-779.
    [27] DONG F,MENG Y,LING W,et al. Single atomic Pt confined into lattice defect sites for low-temperature catalytic oxidation of VOCs[J]. Applied Catalysis B:Environment and Energy,2024,346:123779.
    [28] LIU X,LÜ X,WANG Y,et al. Effect of calcination process on performance of 3DOM CeMnO3 catalysts[J]. Journal of Rare Earths,2021,39(9):1073-1081.
    [29] LIU Y,DAI H,DENG J,et al. Au/3DOM La0.6Sr0.4MnO3:highly active nanocatalysts for the oxidation of carbon monoxide and toluene[J]. Journal of Catalysis,2013,305:146-153.
    [30] TARJOMANNEJAD A,FARZI A,NIARI A,et al. An experimental and kinetic study of toluene oxidation over LaMn1- xBx O3 and La0.8 A0.2Mn0.3 B0.7O3A=Sr,Ce and B=Cu,Fe)nano-perovskite catalysts[J]. Korean Journal of Chemical Engineering,2016,33(9):2628-2637.
    [31] LI X,CHEN D,LI N,et al. Highly efficient Pd catalysts loaded on La1-xSrxMnO3 perovskite nanotube support for low-temperature toluene oxidation[J]. Journal of Alloys and Compounds,2021,871:159575.
    [32] LOSCH P,HUANG W,VOZNIUK O,et al. Modular Pd/zeolite composites demonstrating the key role of support hydrophobic/hydrophilic character in methane catalytic combustion[J]. ACS Catalysis,2019,9(6):4742-4753.
    [33] FARRAUTO R J. Low-temperature oxidation of methane[J]. Science,2012,337(6095):659-660.
    [34] YU X,GENZ N S,MENDES R G,et al. Anchoring PdO x clusters on defective alumina for improved catalytic methane oxidation[J]. Nature Communications,2024,15(1):6494.
    [35] ZHANG T,LANG X,DONG A,et al. Difference of oxidation mechanism between light C3–C4 alkane and alkene over mullite YMn2O5 oxides’ catalyst[J]. ACS Catalysis,2020,10(13):7269-7282.
    [36] FANG Y,LI H,ZHANG Q,et al. Oxygen vacancy-governed opposite catalytic performance for C3H6 and C3H8 combustion:the effect of the Pt electronic structure and chemisorbed oxygen species[J]. Environmental Science & Technology,2022,56(5):3245-3257.
    [37] HUANG Z,DING J,YANG X,et al. Highly efficient oxidation of propane at low temperature over a Pt-based catalyst by optimization support[J]. Environmental Science & Technology,2022,56(23):17278-17287.
    [38] THRANE J,KULD S,NIELSEN N D,et al. Methanol-assisted autocatalysis in catalytic methanol synthesis[J]. Angewandte Chemie International Edition,2020,59(41):18189-18193.
    [39] YANG J,LIU Y,DENG J,et al. AgAuPd/meso-Co3O4:high-performance catalysts for methanol oxidation[J]. Chinese Journal of Catalysis,2019,40(6):837-848.
    [40] JIA H,XING Y,ZHANG L,et al. Progress of catalytic oxidation of typical chlorinated volatile organic compounds(CVOCs):a review[J]. Science of the Total Environment,2023,865:161063.
    [41] SU Y,FU K,PANG C,et al. Recent advances of chlorinated volatile organic compounds’ oxidation catalyzed by multiple catalysts:reasonable adjustment of acidity and redox properties[J]. Environmental Science & Technology,2022,56(14):9854-9871.
    [42] DAI Q,WANG W,WANG X,et al. Sandwich-structured CeO2@ZSM-5 hybrid composites for catalytic oxidation of 1,2-dichloroethane:an integrated solution to coking and chlorine poisoning deactivation[J]. Applied Catalysis B:Environmental,2017,203:31-42.
    [43] LIU H,MA Y,CHEN J,et al. Highly efficient visible-light-driven photocatalytic degradation of VOCs by CO2-assisted synthesized mesoporous carbon confined mixed-phase TiO2 nanocomposites derived from MOFs[J]. Applied Catalysis B:Environmental,2019,250:337-346.
    [44] CHEN G,WANG Z,LIN F,et al. Comparative investigation on catalytic ozonation of VOCs in different types over supported MnO x catalysts[J]. Journal of Hazardous Materials,2020,391:122218.
    [45] VAN D J,DEWULF J,LEYS C,et al. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment:a review[J]. Applied Catalysis B:Environmental,2008,78(3):324-333.
    [46] QU M,CHENG Z,SUN Z,et al. Non-thermal plasma coupled with catalysis for VOCs abatement:a review[J]. Process Safety and Environmental Protection,2021,153:139-158.
    [47] DEBONO O,HEQUET V,LE C L,et al. VOC ternary mixture effect on ppb level photocatalytic oxidation:removal kinetic,reaction intermediates and mineralization[J]. Applied Catalysis B:Environmental,2017,218:359-369.
    [48] LI J,CUI W,CHEN P,et al. Unraveling the mechanism of binary channel reactions in photocatalytic formaldehyde decomposition for promoted mineralization[J]. Applied Catalysis B:Environmental,2020,260:118130.
    [49] LU Y,WANG D,MA C,et al. The effect of activated carbon adsorption on the photocatalytic removal of formaldehyde[J]. Building and Environment,2010,45(3):615-621.
    [50] SHAN A Y,GHAZI T I M,Rashid S A. Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis:a review[J]. Applied Catalysis A:General,2010,389(1):1-8.
    [51] LI J,LÜ X,WENG B,et al. Engineering light propagation for synergetic photo-and thermocatalysis toward volatile organic compounds elimination[J]. Chemical Engineering Journal,2023,461:142022.
    [52] KONG J,JIANG C,RUI Z,et al. Photothermocatalytic synergistic oxidation:An effective way to overcome the negative water effect on supported noble metal catalysts for VOCs oxidation[J]. Chemical Engineering Journal,2020,397:125485.
  • 加载中
计量
  • 文章访问数:  7
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-23
  • 录用日期:  2025-02-06
  • 修回日期:  2025-01-21
  • 网络出版日期:  2025-12-03
  • 刊出日期:  2025-10-01

目录

    /

    返回文章
    返回