中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

污泥生物炭在高级氧化过程中的研究进展

郑龙辉 岳嘉辉 王智赢 李烜桢 李利梅 赵孝芹 沈连峰

郑龙辉, 岳嘉辉, 王智赢, 李烜桢, 李利梅, 赵孝芹, 沈连峰. 污泥生物炭在高级氧化过程中的研究进展[J]. 环境工程, 2025, 43(10): 183-193. doi: 10.13205/j.hjgc.202510020
引用本文: 郑龙辉, 岳嘉辉, 王智赢, 李烜桢, 李利梅, 赵孝芹, 沈连峰. 污泥生物炭在高级氧化过程中的研究进展[J]. 环境工程, 2025, 43(10): 183-193. doi: 10.13205/j.hjgc.202510020
ZHENG Longhui, YUE Jiahui, WANG Zhiying, LI Xuanzhen, LI Limei, ZHAO Xiaoqin, SHEN Lianfeng. Research progress of sludge biochar in advanced oxidation process[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(10): 183-193. doi: 10.13205/j.hjgc.202510020
Citation: ZHENG Longhui, YUE Jiahui, WANG Zhiying, LI Xuanzhen, LI Limei, ZHAO Xiaoqin, SHEN Lianfeng. Research progress of sludge biochar in advanced oxidation process[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(10): 183-193. doi: 10.13205/j.hjgc.202510020

污泥生物炭在高级氧化过程中的研究进展

doi: 10.13205/j.hjgc.202510020
基金项目: 

国家自然科学基金青年基金项目“生物质碳增强二氧化钛光催化产双氧水及其强化机制研究”(22102051);河南省科技攻关项目“金属协同生物碳功能复合材料降解废水新污染物的关键技术研究”(242102321072);河南农业大学拔尖人才项目(30500806,30500922);河南省科技攻关项目“单原子钴协同增效无外源氮掺杂生物炭降解双酚A的应用研究”(232102321040)

详细信息
    作者简介:

    郑龙辉(1988—),女,教授,主要研究方向为环境污染控制、环境催化等。zhenglh@henau.edu.cn

    通讯作者:

    赵孝芹(1991—),女,工程师,主要研究方向为环境监测、环境影响评价。15802863045@163.com

Research progress of sludge biochar in advanced oxidation process

  • 摘要: 基于污泥生物炭的高级氧化技术,将城市污水处理、制药、制革、印染、石油工业等多行业产生的废弃污泥再利用,不仅能够减少污泥堆积造成的环境问题,还能有效缓解水污染,具有深远的环境、社会效益。为系统了解污泥生物炭在高级氧化过程中的研究进展,详细阐述了未改性污泥生物炭和改性污泥生物炭在过硫酸盐、过氧化氢、过氧乙酸以及高碘酸盐等不同氧化体系中的内在联系、反应机制和主要强化作用。污泥生物炭一般通过元素改性、酸碱处理等方法进行改性。不同的污泥生物炭内部含有多种元素和含氧官能团,具有优异的比表面积和孔隙结构,独特的性质促使其在高级氧化体系中可产生强氧化自由基、单线态氧等活性物质,进而实现抗生素、染料以及其他有毒有害污染物的高效降解。该文可为未来污泥生物炭的开发与应用提供了新的思路和理论支撑。
  • [1] YANG Z Q,LI Y,ZHANG X Y,et al. Sludge activated carbon-based CoFe2O4-SAC nanocomposites used as heterogeneous catalysts for degrading antibiotic norfloxacin through activating peroxymonosulfate[J]. Chemical Engineering Journal,2020,384:123319.
    [2] LIU X,LI C S,Z Y,et al. Simultaneous photodegradation of multi-herbicides by oxidized carbon nitride:performance and practical application[J]. Applied Catalysis B:Environmental,2017,219:194-199.
    [3] GUAN K,ZHOU P J,ZHANG J Y,et al. Synthesis and characterization of ZnO@RSDBC composites and their Photo-Oxidative degradation of Acid Orange 7 in water[J]. Journal of Molecular Structure,2020,1203:127425.
    [4] MELERO J A,MARTÍNEZ F,BOTAS J A,et al. Heterogeneous catalytic wet peroxide oxidation systems for the treatment of an industrial pharmaceutical wastewater[J]. Water Research,2009,43(16):4010-4018.
    [5] HOIGNÉ J,BADER H. The role of hydroxyl radical reactions in ozonation processes in aqueous solutions[J]. Water Research,1976,10(5):377-386.
    [6] MOREIRA F C,BOAVENTURA R A R,BRILLAS E,et al. Electrochemical advanced oxidation processes:a review on their application to synthetic and real wastewaters[J]. Applied Catalysis B:Environmental,2017,202:217-261.
    [7] DEWIL R,MANTZAVINOS D,POULIOS I,et al. New perspectives for advanced oxidation processes[J]. Journal of Environmental Management,2017,195:93-99.
    [8] JELLALI S,KHIARI B,USMAN M,et al. Sludge-derived biochars:a review on the influence of synthesis conditions on pollutants removal efficiency from wastewaters[J]. Renewable and Sustainable Energy Reviews,2021,144:111068.
    [9] WEI L L,ZHU F Y,LI Q Y,et al. Development,current state and future trends of sludge management in China:based on exploratory data and CO2-equivalent emissions analysis[J]. Environment International,2020,144:106093.
    [10] Song Q J,Zhou N,Liu T L,et al. Investigation of a“coupling model” of coordination between low-carbon development and urbanization in China[J]. Energy Policy,2018,121:346-354.
    [11] Zheng W C,Shao Y C,Qin S L,et al. Future directions of sustainable resource utilization of residual sewage sludge:a review[J]. Sustainability,2024,16(16):6710.
    [12] CAROTENUTO A,DI F S,MASSAROTTI N,et al. Predictive modeling for energy recovery from sewage sludge gasification[J]. Energy,2023,263:125838.
    [13] HOSSAIN M K,STREZVO V,YIN C K,et al. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato(Lycopersicon esculentum)[J]. Chemosphere,2010,78(9):1167-1171.
    [14] LIU L H,HUANG L,HUANG R,et al. Immobilization of heavy metals in biochar derived from co-pyrolysis of sewage sludge and calcium sulfate[J]. Journal of Hazardous Materials,2021,403:123648.
    [15] DIAZ-CRUZ M S,GARCIA-GALAN M J,GUERRA P,et al. Analysis of selected emerging contaminants in sewage sludge[J]. TrAC Trends in Analytical Chemistry,2009,28(11):1263-1275.
    [16] PAN B,XING B S. Adsorption mechanisms of organic chemicals on carbon nanotubes[J]. Environmental Science & Technology,2008,42(24):9005-9013.
    [17] COSTA R C C,MOURA F C C,ADRISSON J D,et al. Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides[J]. Applied Catalysis B:Environmental,2008,83(1/2):131-139.
    [18] ZHU S S,HUANG X C,MA F,et al. Catalytic removal of aqueous contaminants on N-doped graphitic biochars:inherent roles of adsorption and nonradical mechanisms[J]. Environmental Science & Technology,2018,52(15):8649-8658.
    [19] XI J R,ZHANG R,YE L,et al. Multi-step preparation of Fe and Si modified biochar derived from waterworks sludge towards methylene blue adsorption[J]. Journal of Environmental Management,2022,304:114297.
    [20] ZHANG H,ZHANG M,ZHANG H,et al. Recent development of sludge biochar-based catalysts in advanced oxidation processes for removing wastewater contaminants:a review[J]. Fuel,2023,348:128444.
    [21] JI J Q,YUAN X Z,ZHAO Y L,et al. Mechanistic insights of removing pollutant in adsorption and advanced oxidation processes by sludge biochar[J]. Journal of Hazardous Materials,2022,430:128375.
    [22] HU J W,ZHAO L,LUO J M,et al. A sustainable reuse strategy of converting waste activated sludge into biochar for contaminants removal from water:Modifications,applications and perspectives[J]. Journal of Hazardous Materials,2022,438:129437.
    [23] WACLAWEK S,LUTZE H V,GRUBEL K,et al. Chemistry of persulfates in water and wastewater treatment:a review[J]. Chemical Engineering Journal,2017,330:44-62.
    [24] FLANAGAN J,GRIFFITH W P,SKAPSKI A C. The active principle of Caro's acid,HSO5 -:X-ray crystal structure of KHSO5.H2O[J]. Journal of the Chemical Society,Chemical Communications,1984(23):1574-1575.
    [25] CHEN J B,FANG C,XIA W J,et al. Selective transformation of β-Lactam antibiotics by peroxymonosulfate:reaction kinetics and nonradical mechanism[J]. Environmental Science & Technology,2018,52(3):1461-1470.
    [26] BOKARE A D,CHOI W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes[J]. Journal of Hazardous Materials,2014,275:121-135.
    [27] JANZEN E G,KOTAKE Y,HINTON R D. Stabilities of hydroxyl radical spin adducts of PBN-type spin traps[J]. Free Radical Biology and Medicine,1992,12(2):169-173.
    [28] CHEN X,OH W,LIM T T. Graphene-and CNTs-based carbocatalysts in persulfates activation:material design and catalytic mechanisms[J]. Chemical Engineering Journal,2018,354:941-976.
    [29] SHAH S N A,LI H F,LIN J M. Enhancement of periodate-hydrogen peroxide chemiluminescence by nitrogen doped carbon dots and its application for the determination of pyrogallol and gallic acid[J]. Talanta,2016,153:23-30.
    [30] VLESSIDIS A G,EVMIRIDIS N P. Periodate oxidation and its contribution to instrumental methods of micro-analysis–a review[J]. Analytica Chimica Acta,2009,652(1–2):85-127.
    [31] LING C,WU S,HAN J G,et al. Sulfide-modified zero-valent iron activated periodate for sulfadiazine removal:performance and dominant routine of reactive species production[J]. Water Research,2022,220:118676.
    [32] WANG J L,TANG J T. Fe-based Fenton-like catalysts for water treatment:catalytic mechanisms and applications[J]. Journal of Molecular Liquids,2021,332:115755.
    [33] HU J W,GONG H B,LIU X,et al. Target-prepared sludge biochar-derived synergistic Mn and N/O induces high-performance periodate activation for reactive iodine radicals generation towards ofloxacin degradation[J]. Journal of Hazardous Materials,2023,460:132362.
    [34] ZHANG H,ZHANG M,ZHANG H L,et al. Recent development of sludge biochar-based catalysts in advanced oxidation processes for removing wastewater contaminants:a review[J]. Fuel,2023,348:128444.
    [35] HE L,LI M,CHEN F,et al. Novel coagulation waste-based Fe-containing carbonaceous catalyst as peroxymonosulfate activator for pollutants degradation:role of ROS and electron transfer pathway[J]. Journal of Hazardous Materials,2021,417:126113.
    [36] WANG Q R,SHI Y X,LÜ S Y,et al. Peroxymonosulfate activation by tea residue biochar loaded with Fe3O4 for the degradation of tetracycline hydrochloride:performance and reaction mechanism[J]. RSC Advances,2021,11(30):18525-18538.
    [37] FU H C,ZHAO P,XU S J,et al. Fabrication of Fe3O4 and graphitized porous biochar composites for activating peroxymonosulfate to degrade p-hydroxybenzoic acid:insights on the mechanism[J]. Chemical Engineering Journal,2019,375:121980.
    [38] DONG Z T,NIU C G,GUO H,et al. Anchoring CuFe2O4 nanoparticles into N-doped carbon nanosheets for peroxymonosulfate activation:built-in electric field dominated radical and non-radical process[J]. Chemical Engineering Journal,2021,426:130850.
    [39] DUAN X G,SUN H Q,SHAO Z P,et al. Nonradical reactions in environmental remediation processes:uncertainty and challenges[J]. Applied Catalysis B:Environmental,2018,224:973-982.
    [40] LI X M,SHI J X,LUO X X. Enhanced adsorption of rhodamine B from water by Fe-N co-modified biochar:preparation,performance,mechanism and reusability[J]. Bioresource Technology,2022,343:126103.
    [41] PI Z J,LI X M,WANG D B,et al. Persulfate activation by oxidation biochar supported magnetite particles for tetracycline removal:Performance and degradation pathway[J]. Journal of Cleaner Production,2019,235:1103-1115.
    [42] FANG Z H,ZHOU Z L,XUE G,et al. Application of sludge biochar combined with peroxydisulfate to degrade fluoroquinolones:Efficiency,mechanisms and implication for ISCO[J]. Journal of Hazardous Materials,2022,426:128081.
    [43] LI Q Y,TANG Y L,ZHOU B,et al. Resource utilization of tannery sludge to prepare biochar as persulfate activators for highly efficient degradation of tetracycline[J]. Bioresource Technology,2022,358:127417.
    [44] CHEN J L,BAI X Y,YUAN Y,et al. Printing and dyeing sludge derived biochar for activation of peroxymonosulfate to remove aqueous organic pollutants:activation mechanisms and environmental safety assessment[J]. Chemical Engineering Journal,2022,446:136942.
    [45] MIAN M M,LIU G J,ZHOU H H. Preparation of N-doped biochar from sewage sludge and melamine for peroxymonosulfate activation:N-functionality and catalytic mechanisms[J]. Science of the Total Environment,2020,744:140862.
    [46] Lin L,Fang W,Liang Q W,et al. Synthesis of Fe-doped sludge biochar from Fenton sludge for efficient activation of peroxymonosulfate in tetracycline hydrochloride degradation[J]. Journal of Environmental Chemical Engineering,2024,12(3):112590.
    [47] HUANG B C,JIANG J,HUANG G X,et al. Sludge biochar-based catalyst for improved pollutant degradation by activating peroxymonosulfate[J]. Journal of Materials Chemistry A,2018,6(19):8978.
    [48] WANG Z N,GAO B,LIU J D,et al. The oxidation treatment of pharmaceutical wastewater in H2O2 and PMS system by Iron-containing biochar originated from excess sludge[J]. Journal of Water Process Engineering,2024,58:104833.
    [49] LI J,LIU W Z,WU B W,et al. Comprehensive management workflow of atrial fibrillation raises the compliance of patients:an observational cross-sectional study[J]. International Journal of Heart Rhythm,2020,5(2):25-29.
    [50] CHEN Z H,HU M,CUI B H,et al. The effect of bioleaching on sewage sludge pyrolysis[J]. Waste Management,2016,48:383-388.
    [51] GAGOL M,PRZYJAZNY A,BOCZKAJ G. Wastewater treatment by means of advanced oxidation processes based on cavitation–a review[J]. Chemical Engineering Journal,2018,338:599-627.
    [52] DRUMM F C,DE O J S,FOLETTO E L,et al. Response surface methodology approach for the optimization of tartrazine removal by heterogeneous photo-Fenton process using mesostructured Fe2O3-suppoted ZSM-5 prepared by chitin-templating[J]. Chemical Engineering Communications,2018,205(4):445-455.
    [53] GONG K D,LI X Y,LIU H Y,et al. Residue metals and intrinsic moisture in excess sludge improve pore formation during its carbonization process[J]. Carbon,2020,156:320-328.
    [54] JEGATHEESAN V,PRAMANIK B K,CHEN J Y,et al. Treatment of textile wastewater with membrane bioreactor:a critical review[J]. Bioresource Technology,2016,204:202-212.
    [55] DU J S,GUO W Q,WANG H Z,et al. Hydroxyl radical dominated degradation of aquatic sulfamethoxazole by Fe0/bisulfite/O2:Kinetics,mechanisms,and pathways[J]. Water Research,2018,138:323-332.
    [56] YE G R,ZHOU J G,HUANG R T,et al. Magnetic sludge-based biochar derived from Fenton sludge as an efficient heterogeneous Fenton catalyst for degrading Methylene blue[J]. Journal of Environmental Chemical Engineering,2022,10(2):107242.
    [57] LIU Y,JIANG Z H,FU J,et al. Iron-biochar production from oily sludge pyrolysis and its application for organic dyes removal[J]. Chemosphere,2022,301:134803.
    [58] KONG L J,ZHU Y T,LIU M X,et al. Conversion of Fe-rich waste sludge into nano-flake Fe-SC hybrid Fenton-like catalyst for degradation of AOII[J]. Environmental Pollution,2016,216:568-574.
    [59] XIA J,SHEN Y H,ZHANG H J,et al. Synthesis of magnetic nZVI@biochar catalyst from acid precipitated black liquor and Fenton sludge and its application for Fenton-like removal of rhodamine B dye[J]. Industrial Crops and Products,2022,187:115449.
    [60] ZHU B X,YU Y,DING Y D,et al. Iron-modified granular sludge biochar-based catalysts for improved Rhodamine B degradation by activating peroxymonosulfate[J]. Biomass Conversion and Biorefinery,2022.
    [61] LI Y B,LI H L,ZHANG Y,et al. Preparation of magnetic biochar used bioleached sludge to enhance tetracycline removal in a heterogeneous Fenton-like system[J]. Process Safety and Environmental Protection,2024,189:302-312.
    [62] ZHANG H,XUE G,CHEN H,et al. Hydrothermal synthesizing sludge-based magnetite catalyst from ferric sludge and biosolids:Formation mechanism and catalytic performance[J]. Science of the Total Environment,2019,697:133986.
    [63] WANG Z N,GAO B,LIU J D,et al. The oxidation treatment of pharmaceutical wastewater in H2O2 and PMS system by Iron-containing biochar originated from excess sludge[J]. Journal of Water Process Engineering,2024,58:104833.
    [64] GAN Q,HOU H J,LIANG S,et al. Sludge-derived biochar with multivalent iron as an efficient Fenton catalyst for degradation of 4-Chlorophenol[J]. Science of the Total Environment,2020,725:138299.
    [65] AI J,ZHANG W J,LIAO G Y,et al. A novel waste activated sludge multistage utilization strategy for preparing carbon-based Fenton-like catalysts:catalytic performance assessment and micro-interfacial mechanisms[J]. Water Research,2019,150:473-487.
    [66] GUO L Q,CHEN F,FAN X Q,et al. S-doped α-Fe2O3 as a highly active heterogeneous Fenton-like catalyst towards the degradation of acid orange 7 and phenol[J]. Applied Catalysis B:Environmental,2010,96(1/2):162-168.
    [67] TANG X J,LEI Y,YU C,et al. Highly-efficient degradation of organic pollutants by oxalic acid modified sludge biochar:mechanism and pathways[J]. Chemosphere,2023,325:138409.
    [68] LIU T C,CHEN J B,LI N,et al. Unexpected role of nitrite in promoting transformation of sulfonamide antibiotics by peracetic acid:reactive nitrogen species contribution and harmful disinfection byproduct formation potential[J]. Environmental Science & Technology,2021,56(2):1300-1309.
    [69] ZHANG C Q,BROWN P J B,HU Z Q. Thermodynamic properties of an emerging chemical disinfectant,peracetic acid[J]. Science of the Total Environment,2018,621:948-959.
    [70] WANG Z P,WANG J W,XIONG B,et al. Application of cobalt/peracetic acid to degrade sulfamethoxazole at neutral condition:efficiency and mechanisms[J]. Environmental Science & Technology,2019,54(1):464-475.
    [71] WARDMAN P. Reduction potentials of one-electron couples involving free radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data,1989,18(4):1637-1755.
    [72] ZHOU Z L,YANG Y,XUE G,et al. Efficient degradation of fluoroquinolone antibiotics in the landfill leachate by sludge biochar activated peracetic acid:radical vs non-radical process[J]. Chemical Engineering Journal,2024,480:148048.
    [73] WU L Y,LI Z Y,CHENG P T,et al. Efficient activation of peracetic acid by mixed sludge derived biochar:critical role of persistent free radicals[J]. Water Research,2022,223:119013.
    [74] ZHAO Y L,WANG H. Structure-function correlations of carbonaceous materials for persulfate-based advanced oxidation[J]. Langmuir,2021,37(48):13969-13975.
    [75] ZHU S S,HUANG X C,MA F,et al. Catalytic removal of aqueous contaminants on N-Doped graphitic biochars:inherent roles of adsorption and nonradical mechanisms[J]. Environmental Science & Technology,2018,52(15):8649-8658.
    [76] CHEN Y D,WANG R P,DUAN X G,et al. Production,properties,and catalytic applications of sludge derived biochar for environmental remediation[J]. Water Research,2020,187:116390.
    [77] ZENG T T,MO G H,ZHANG X L,et al. U(VI)removal efficiency and mechanism of biochars derived from sewage sludge at two pyrolysis temperatures[J]. Journal of Radioanalytical and Nuclear Chemistry,2020,326(2):1413-1425.
    [78] GAO L Y,LIU B H,DAI X,et al. Degradation of sulfamethoxazole by alkali-modified sludge biochar activated by peracetic acid[J]. Industrial Water Treatment,2024,44(11):132-141. 高璐瑶,刘邦海,代鑫,等. 碱改性污泥生物炭活化过氧乙酸降解磺胺甲恶唑[J]. 工业水处理,2024,44(11):132-141.
    [79] LEE C G,YOON J Y. Application of photoactivated periodate to the decolorization of reactive dye:reaction parameters and mechanism[J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,165(1/2/3):35-41.
    [80] LEE Y C,CHEN M J,HUANG C P,et al. Efficient sonochemical degradation of perfluorooctanoic acid using periodate[J]. Ultrasonics Sonochemistry,2016,31:499-505.
    [81] DU J K,TANG S G,FAHEEM,et al. Insights into periodate oxidation of bisphenol A mediated by manganese[J]. Chemical Engineering Journal,2019,369:1034-1039.
    [82] XIAO P Y,YI X L,WU M H,et al. Catalytic performance and periodate activation mechanism of anaerobic sewage sludge-derived biochar[J]. Journal of Hazardous Materials,2022,424:127692.
    [83] CHEN Y,ZENG H P,XU J X,et al. Activation of periodate by iron-containing sludge from groundwater treatment plants for degradation of methylene blue in wastewater[J]. Journal of Environmental Chemical Engineering,2024,12(3):112807.
    [84] HR L Y,YANG S D,SHEN S T,et al. Novel insights into the mechanism of periodate activation by heterogeneous ultrasonic-enhanced sludge biochar:relevance for efficient degradation of levofloxacin[J]. Journal of Hazardous Materials,2022,434:128860.
    [85] HE L Y,YANG S D,YANG L,et al. Ball milling-assisted preparation of sludge biochar as a novel periodate activator for nonradical degradation of sulfamethoxazole:insight into the mechanism of enhanced electron transfer[J]. Environmental Pollution,2023,316:120620.
    [86] DAI J,WANG Z,CHEN K W,et al. Applying a novel advanced oxidation process of biochar activated periodate for the efficient degradation of bisphenol A:two nonradical pathways[J]. Chemical Engineering Journal,2023,453:139889.
  • 加载中
计量
  • 文章访问数:  5
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-31
  • 录用日期:  2025-06-15
  • 修回日期:  2025-05-08
  • 网络出版日期:  2025-12-03
  • 刊出日期:  2025-10-01

目录

    /

    返回文章
    返回