中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体催化降解VOCs中表面相互作用的研究进展

李茹 汤艺 崔光阳 席丹珠

李茹, 汤艺, 崔光阳, 席丹珠. 等离子体催化降解VOCs中表面相互作用的研究进展[J]. 环境工程, 2025, 43(10): 226-234. doi: 10.13205/j.hjgc.202510025
引用本文: 李茹, 汤艺, 崔光阳, 席丹珠. 等离子体催化降解VOCs中表面相互作用的研究进展[J]. 环境工程, 2025, 43(10): 226-234. doi: 10.13205/j.hjgc.202510025
LI Ru, TANG Yi, CUI Guangyang, XI Danzhu. Research progress on surface interactions in plasma-catalyzed degradation of VOCs[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(10): 226-234. doi: 10.13205/j.hjgc.202510025
Citation: LI Ru, TANG Yi, CUI Guangyang, XI Danzhu. Research progress on surface interactions in plasma-catalyzed degradation of VOCs[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(10): 226-234. doi: 10.13205/j.hjgc.202510025

等离子体催化降解VOCs中表面相互作用的研究进展

doi: 10.13205/j.hjgc.202510025
基金项目: 

国家自然科学基金项目(11105102)

详细信息
    作者简介:

    李茹(1972—),女,教授,主要研究方向为大气污染控制技术。xjliru@163.com

    通讯作者:

    汤艺(1999—),女,研究生,主要研究方向为低温等离子体降解VOCs。ttangyii@outlook.com

Research progress on surface interactions in plasma-catalyzed degradation of VOCs

  • 摘要: 近年来,低温等离子体协同催化技术被认为是具有前景的VOCs降解技术之一。从现有研究结果来看,催化剂可显著提高VOCs降解效率,但不同催化剂的作用以及机理存在差异。因此,有必要深入了解等离子体与催化剂相互作用的研究进展。经过等离子体处理后的催化剂能提高吸附性能、产生热活化和抗积碳性等,同时催化剂还能改变等离子体的放电类型、增强局部电场和活性粒子的产生等。因此,文章主要综述光催化剂、贵金属催化剂、过渡金属氧化物催化剂等3种催化剂的研究进展,等离子体协同催化机理,催化剂与等离子体之间的相互影响。最后,基于当前研究现状对该技术的发展趋势进行了讨论与展望。
  • [1] YANG C T,MIAO G,PI Y H,et al. Abatement of various types of VOCs by adsorption/catalytic oxidation:a review[J]. Chemical Engineering Journal,2019:3701128-3701153.
    [2] SUN X,LI C L. Removal of gaseous volatile organic compounds via vacuum ultraviolet photodegradation:review and prospect[J]. Journal of Environmental Sciences,2023,125:427-442.
    [3] LU W J,ABBAS Y,MUSTAFA M F,et al. A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds[J]. Frontiers of Environmental Science & Engineering,2019,13(2):30.
    [4] XIA S Y,MI J F,DU S N,et al. Research progress of non-thermal plasmatreatment of volatile organic compounds[J]. Applied Chemical Industry,2021,50(4):1130-1135. 夏诗杨,米俊锋,杜胜男,等. 低温等离子体处理挥发性有机物的研究进展[J]. 应用化工,2021,50(4):1130-1135.
    [5] CHANG T,WANG Y,WANG Y Q,et al. A critical review on plasma-catalytic removal of VOCs:Catalyst development,process parameters and synergetic reaction mechanism[J]. Science of the Total Environment,2022,828:154290.
    [6] QU M M,CHENG Z W,CHENG J M. Non-thermal plasma coupled with catalysis for VOCs abatement:a review[J]. Process Safety and Environmental Protection,2021,153:139-158.
    [7] KHOJA A H,MAZHAR A,SALEEM F,et al. Recent developments in catalyst synthesis using DBD plasma for reforming applications[J]. International Journal of Hydrogen Energy,2021,46(29):15367-15388.
    [8] YU M F,DU S N,MI J F,et al. Research progress of low-temperature plasma synergisticcatalytic treatment of VOCs[J]. Environmental Engineering,2022,40(8):213-219,212. 余淼霏,杜胜男,米俊锋,等. 低温等离子体协同催化处理VOCs的研究进展[J]. 环境工程,2022,40(8):213-219.
    [9] CHEN P,TAO L,XIE Y B,et al. Non-thermal plasma cooperating catalyst degradation of the volatile organic compounds:a review[J]. Chemical Industry and Engineering Progress,2019,38(9):4284-4294. 陈鹏,陶雷,谢怡冰,等. 低温等离子体协同催化降解挥发性有机物的研究进展[J]. 化工进展,2019,38(9):4284-4294.
    [10] ZHU B,ZHANG L,YAN Y,et al. Enhancing toluene removal in a plasma photocatalytic system through a black TiO2 photocatalyst(Article)[J]. Plasma Science and Technology,2019,21(11):77-85.
    [11] QI L Q,YU Z,CHEN Q H,et al. Toluene degradation using plasma-catalytic hybrid system over Mn-TiO2 and Fe-TiO2[J]. Environ Sci Pollut Res Int,2022,30(9):23494-23509.
    [12] CHUNG W C,MEI D H,TU X,et al. Removal of VOCs from gas streams via plasma and catalysis[J]. Catalysis Reviews. Science and Engineering,2019,61(2):270-331.
    [13] CHU S Q,WANG E L,FENG F S,et al. A review of noble metal catalysts for catalytic removal of VOCs[J]. Catalysts,2022,12(12):1543.
    [14] YAO S L,MAO L A,ZHANG X,et al. Mechanism analysis of catalytic oxidation of benzene by plasma complex micro-noble metal reactor[J]. High Voltage Technology,2017,43(12):3973-3980. 姚水良,毛灵爱,张霞,等. 等离子体复合微量贵金属催化反应器催化氧化苯的机理分析[J]. 高电压技术,2017,43(12):3973-3980.
    [15] WU Z L,ZHU D D,CHEN Z Z,et al. Enhanced energy efficiency and reduced nanoparticle emission on plasma catalytic oxidation of toluene using Au/γ-Al2O3 nanocatalyst[J]. Chemical Engineering Journal,2022,427(1):130983.
    [16] KAMAL M S,RAZZAK S A,HOSSAIN M M. Catalytic oxidation of volatile organic compounds(VOCs)-A review[J]. Atmospheric Environment,2016,140:117-134.
    [17] GAO W,TANG X L,YI H H,et al. Mesoporous molecular sieve-based materials for catalytic oxidation of VOC:a review[J]. Journal of Environmental Sciences,2023,125:112-134.
    [18] BHARGAVI K V S S,RAY D,CHAWDHURY P,et al. Room-temperature toluene decomposition by catalytic non-thermal plasma reactor[J]. IEEE Transactions on Plasma Science,2022,50(6):1416-1422.
    [19] ZHU Y F,LI D D,JI C J,et al. Non-thermal plasma incorporated with Cu-Mn/γ-Al2O3 for mixed benzene series VOCs’ degradation[J]. Catalysts,2023,13(695):695.
    [20] ZHANG Y K,ZHU Y,TAO S L,et al. Plasma-coupled catalysis in VOCs removal and CO2 conversion:efficiency enhancement and synergistic mechanism[J]. Catalysis Communications,2022,172:106535.
    [21] SHI C,WANG S,GE X,et al. A review of different catalytic systems for dry reforming of methane:conventional catalysis-alone and plasma-catalytic system(Article)[J]. Journal of CO2 Utilization,2021,46:101462.
    [22] ZHU N,HONG Y,CAI Y K,et al. The removal of CH4 and NOx from marine LNG Engine exhaust by NTP combined with catalyst:a review[J]. Materials(Basel,Switzerland),2023,16(14):4969.
    [23] TU X,GALLON H J,TWIGG M V,et al. Dry reforming of methane over a Ni/Al2O3 catalyst in a coaxial dielectric barrier discharge reactor[J]. Journal of Physics D:Applied Physics,2011,44(27):274007.
    [24] SCHOENBACH K H,MALIK M A,MINAMITANI Y. Plasma-based chemical reactors-comparison of catalytic activity of aluminum oxide and silica gel for decomposition of volatile organic compounds(VOCs)in a plasmacatalytic reactor[J]. IEEE Transactions on Plasma Science,2005,33(1):50-56.
    [25] ENGELING K W,KRUSZELNICKI J,KUSHNER M J,et al. Time-resolved evolution of micro-discharges,surface ionization waves and plasma propagation in a two-dimensional packed bed reactor[J]. Plasma Sources Science and Technology,2018,27(8):085002.
    [26] FENG F D,YE L L,LIU J,et al. Non-thermal plasma generation by using back corona discharge on catalyst(Article)[J]. Journal of Electrostatics,2013,71(3):179-184.
    [27] LAER K V,BOGAERTS A. How bead size and dielectric constant affect the plasma behaviour in a packed bed plasma reactor:a modelling study[J]. Plasma Sources Science & Technology,2017,26(8):85007.1-85007.11.
    [28] WANG W Z,KIM H H,LAER K V,et al. Streamer propagation in a packed bed plasma reactor for plasma catalysis applications[J]. Chemical Engineering Journal,2018,334:2467-2479.
    [29] FU M J,SHANG K F,PENG B F,et al. Generation of air discharge plasma in the cavities of porous catalysts:a modeling study[J]. Plasma Science and Technology,2023,25(2):025402.
    [30] WU K,SUN Y H,LIU J,et al. Nonthermal plasma catalysis for toluene decomposition over BaTiO3-based catalysts by Ce doping at A-sites:The role of surface-reactive oxygen species[J]. Journal of Hazardous Materials,2021,405:124156.
    [31] LIU L,SHAO G C,MA C L,et al. Plasma-catalysis for VOCs decomposition:a review on micro-and macroscopic modeling[J]. Journal of Hazardous Materials,2023,451:131100.
    [32] HOLZER F,KOPINKE F D,ROLAND U. Influence of ferroelectric materials and catalysts on the performance of Non-Thermal Plasma(NTP)for the removal of air pollutants[J]. Plasma Chemistry and Plasma Processing,2005,25(6):595-611.
    [33] BOGAERTS A,ZHANG Q Z,ZHANG Y R,et al. Burning questions of plasma catalysis:answers by modeling[J]. Catalysis Today,2019,337:3-14.
    [34] VAN LEAR K,BOGAERTS A. Influence of gap size and dielectric constant of the packing material on the plasma behaviour in a packed bed DBD reactor:a fluid modelling study[J]. Plasma Processes and Polymers,2017,14:1600129.
    [35] WANG B F,XU X X,XU W C,et al. The mechanism of non-thermal plasma catalysis on volatile organic compounds removal[J]. Catalysis Surveys from Asia,2018,22(2):73-94.
    [36] ZHANG Y R,VAN L K,NEYTS E Cet al. Can plasma be formed in catalyst pores? A modeling investigation[J]. Applied Catalysis,B. Environmental,2016,18556-18567.
    [37] SUMAETH C,WITAN K,PRAMOCH R,et al. A combined multistage corona discharge and catalytic system for gaseous benzene removal[J]. Journal of Molecular Catalysis. A:Chemistry,2007,263:128-136.
    [38] SHI X J,LIANG W J,YIN G B,et al. Degradation of chlorobenzene by low temperature plasma in collaboration with Mn-based catalysts[J]. Acta Chimica Sinica,2022,73(10):4472-4483. 石秀娟,梁文俊,尹国彬,等. 低温等离子体协同Mn基催化剂降解氯苯研究[J]. 化工学报,2022,73(10):4472-4483.
    [39] SHI X J,LIANG W J,YIN G B,et al. Degradation of chlorobenzene by non-thermal plasma coupled with catalyst:influence of catalyst,interaction between plasma and catalyst[J]. Plasma Science and Technology,2023,25(5):055506.
    [40] NEYTS E C,BOGAERTS A. Understanding plasma catalysis through modelling and simulation:a review[J]. Journal of Physics D:Applied Physics,2014,47(22):1.
    [41] YAO X,ZHANG Z M,CHEN L X,et al. Work function-tailored nitrogenase-like Fe double-atom catalysts on transition metal dichalcogenides for nitrogen fixation[J]. ACS Sustainable Chemistry & Engineering,2023,11(13):4990-4997.
    [42] NEYTS E C,OSTRIKOV K,SUNKARA M K,et al. Plasma catalysis:synergistic effects at the nanoscale[J]. Chemical Reviews,2015,115(24):13408-13446.
    [43] ROLAND U,HOLZER F,POPPL A,et al. Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds[J]. Applied Catalysis B,Environmental,2004,58(3/4):227-234.
    [44] HUA W,JIN L J,HE X F,et al. Preparation of Ni/MgO catalyst for CO2 reforming of methane by dielectric-barrier discharge plasma[J]. Catalysis Communications,2010,11(11):968-972.
    [45] ZHOU W L,ZHANG X M,XU S M,et al. Preparation and catalytic performance of Ni based catalyst enhanced by plasma[J]. Acta Petrolei Sinica(Petroleum Processing),2019,39(5):1046-1058. 周为莉,章旭明,徐顺秒,等. 等离子体增强Ni基催化剂制备及其催化正戊烷重整性能[J]. 石油学报(石油加工),2023,39(5):1046-1058.
    [46] CHEN B,WU Y H,YANG X C,et al. Experimental study on storage performance of NSR catalysts improved by NTP[J]. High Voltage Technology,2008,34(10):2145-2149. 陈波,吴宇煌,杨学昌,等. NTP提升NSR催化剂储存性能的实验研究[J]. 高电压技术,2008,34(10):2145-2149.
    [47] DING Y C,LIU W,HUANG W J,et al. Enhancement of flue gas low-concentration toluene removal in pulsed plasma coupling with porous ceramic modified catalyst reactor[J]. Industrial & Engineering Chemistry Research,2023,62(7):3249-3258.
    [48] DURME V J,DEWULF J,LEYS C,et al. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment:a review[J]. Applied Catalysis B,Environmental,2007,78(3/4):324-333.
    [49] VANDENBROUCKE A M,MORENT R,DE G N,et al. Non-thermal plasmas for non-catalytic and catalytic VOC abatement[J]. Journal of Hazardous Materials,2011,195:30-54.
    [50] MEI D H,ZHU X B,WU C F,et al. Plasma-photocatalytic conversion of CO2 at low temperatures:understanding the synergistic effect of plasma-catalysis[J]. Applied Catalysis,B. Environmental,2016:182525-182532.
    [51] BISET P M,GUILERA J,ZHANG T,et al. On the role of ceria in Ni-Al2O3 catalyst for CO2 plasma methanation[J]. Applied Catalysis,A. General,2019:575223-575229.
    [52] TRINH Q H,MOK Y S. Environmental plasma-catalysis for the energy-efficient treatment of volatile organic compounds[J]. The Korean Journal of Chemical Engineering,2016,33(3):735-748.
    [53] YE Z P,ZHAO L,NIKIFOROV A,et al. A review of the advances in catalyst modification using nonthermal plasma:process,mechanism and applications[J]. Advances in colloid and interface science,2022,308.
    [54] SHAO S S,YE Z,SUN J Y,et al. A review on the application of non-thermal plasma(NTP)in the conversion of biomass:catalyst preparation,thermal utilization and catalyst regeneration[J]. Fuel,2022,330(15):1-21.
    [55] JIA L Y,FAROUHA A,PINARD L,et al. New routes for complete regeneration of coked zeolite[J]. Applied Catalysis,B. Environmental,2017,21982-21991.
    [56] SROUR H,ALNABOULSI A,AMMAR A,et al. Elimination of coke in an aged hydrotreating catalyst via a non-thermal plasma process:comparison with a coked zeolite[J]. Catalysts,2019,9(9):783.
  • 加载中
计量
  • 文章访问数:  11
  • HTML全文浏览量:  5
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-20
  • 录用日期:  2024-02-28
  • 修回日期:  2024-02-02
  • 网络出版日期:  2025-12-03
  • 刊出日期:  2025-10-01

目录

    /

    返回文章
    返回