中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁碳微电解强化煤制气废水酚类物质去除效能

麻微微 施雪卿 孔巧平 于童 韩洪军

尹文华, 龙世康, 何志远, 郑毅云, 刘丽君, 谢丹平, 詹文森. 陈腐垃圾掺烧对垃圾焚烧烟气中污染物排放的影响[J]. 环境工程, 2022, 40(7): 76-80,87. doi: DOI:10.13205/j.hjgc.202207011
引用本文: 麻微微, 施雪卿, 孔巧平, 于童, 韩洪军. 铁碳微电解强化煤制气废水酚类物质去除效能[J]. 环境工程, 2022, 40(7): 18-24. doi: DOI:10.13205/j.hjgc.202207003
YIN Wenhua, LONG Shikang, HE Zhiyuan, ZHENG Yiyun, LIU Lijun, XIE Danping, ZHAN Wensen. IMPACT OF CO-INCINERATION OF MSWI WITH AGED REFUSE ON GASEOUS POLLUTANTS EMISSION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 76-80,87. doi: DOI:10.13205/j.hjgc.202207011
Citation: MA Weiwei, SHI Xueqing, KONG Qiaoping, YU Tong, HAN Hongjun. ENHANCED REMOVAL OF PHENOLIC COMPOUNDS IN COAL GASIFICATION WASTEWATER BY IRON-CARBON MICROELECTROLYSIS PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 18-24. doi: DOI:10.13205/j.hjgc.202207003

铁碳微电解强化煤制气废水酚类物质去除效能

doi: DOI:10.13205/j.hjgc.202207003
基金项目: 

山东省泰山学者工程(tsqn201812091)

详细信息
    作者简介:

    麻微微(1990-),女,副教授,主要研究方向为工业废水生物处理以及废水生物毒性评价。maweiweihit@163.com

    通讯作者:

    施雪卿(1985-),男,教授,主要研究方向为工业废水难降解有机污染物生物强化处理。shixq85@163.com

ENHANCED REMOVAL OF PHENOLIC COMPOUNDS IN COAL GASIFICATION WASTEWATER BY IRON-CARBON MICROELECTROLYSIS PROCESS

  • 摘要: 探讨了铁碳微电解(ICME)技术对煤制气废水(CGW)中酚类污染物的去除效果,以及对废水可生化性能的改善效果。结果表明:与单一活性炭和单质铁相比,铁碳复合(Fe/C)填料具有较高的铁碳比、更丰富的孔隙结构以及更高的微电解反应活性。单因素分析表明,在煤制气废水处理中,低溶解氧(DO)和酸性条件更有利于微电解的作用过程,而Fe/C填料投加量过高或过低均不利于微电解反应。由响应曲面分析获得ICME处理煤制气废水酚类物质的最佳反应条件为:pH为6.50,Fe/C填料投加量为62.22 g/L,ρ(DO)为0.47 mg/L。在此最佳条件下,COD和总酚去除率分别达到80.98%和75.03%,BOD5/COD值由0.21提高到0.36。结果表明,ICME在强化煤制气废水酚类污染物去除方面发挥重要作用,可为后续生化处理工艺提供良好的水质条件。
  • [1] ZHU H, HAN Y X, XU C Y, et al. Overview of the state of the art of processes and technical bottlenecks for coal gasification wastewater treatment[J]. Science of the Total Environment, 2018, 637:1108-1126.
    [2] WANG W, HAN H J, YUAN M, et al. Treatment of coal gasification wastewater by a two-continuous UASB system with step-feed for COD and phenols removal[J]. Bioresource Technology, 2011, 102(9):5454-5460.
    [3] JIA S Y, HAN H J, ZHUANG H F, et al. The pollutants removal and bacterial community dynamics relationship within a full-scale British Gas/Lurgi coal gasification wastewater treatment using a novel system[J]. Bioresource Technology, 2015, 200:103-110.
    [4] JIA S Y, HAN H J, HOU B L, et al. Treatment of coal gasification wastewater by membrane bioreactor hybrid powdered activated carbon (MBR-PAC) system[J]. Chemosphere, 2014, 117:753-759.
    [5] WU S Q, QI Y F, FAN C Z, et al. Fe-Ni catalytic micro-electrolysis coupled with biological aerated filter for 2,4,6-trinitrotoluene production wastewater treatment[J]. Journal of Cleaner Production, 2017, 156(10):679-687.
    [6] WANG X Y, DU Y, MA J. Novel synthesis of carbon spheres supported nanoscale zero-valent iron for removal of metronidazole[J]. Applied Surface Science, 2016, 390(30):50-59.
    [7] DOU X M, LI R, ZHAO B, et al. Arsenate removal from water by zero-valent iron/activated carbon galvanic couples[J]. Journal of Hazardous Materials, 2010, 182(1/2/3):108-114.
    [8] 贾福强,苗钧魁,于跃芹,等.响应面法优化电渗析处理褐藻酸钠废水工艺[J].环境工程学报, 2014,8(3):1041-1045.
    [9] 张越锋,殷波,于海峰,等.响应面法优化Fenton处理棉浆废水[J].水处理技术, 2020, 46(6):117-121.
    [10] MA W W,HAN Y X,MA W C,et al. Enhanced nitrogen removal from coal gasification wastewater by simultaneous nitrification and denitrification (SND) in an oxygen-limited aeration sequencing batch biofilm reactor[J]. Bioresource Technology, 2017,244:84-91.
    [11] 郑梦启,活性焦强化生物降解煤热解废水环状化合物性能与机制[D].哈尔滨:哈尔滨工业大学,2021.
    [12] 国家环境保护总局编委会.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002.
    [13] 侯保林. SAC-Fe催化粒子电极三维电Fenton处理煤化工废水二级出水效能研究[D].哈尔滨:哈尔滨工业大学, 2016.
    [14] 王德欣.外源强化厌氧处理费托合成废水的效能研究[D].哈尔滨:哈尔滨工业大学, 2017.
    [15] ZHANG S, YU H M, YANG J, et al. Design of the nanoarray pattern Fe-Ni bi-metal nanoparticles@M13 virus for the enhanced reduction of p-chloronitrobenzene through the micro-electrolysis effect[J]. Environmental Science-Nano, 2017, 4(4):876-885.
    [16] HUA L, YAN L, LIU L H. Treatment of dinitrodiazophenol production wastewater by Fe/C and Fe/Cu internal electrolysis and the COD removal kinetics[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 58:148-154.
    [17] LAI B, ZHOU Y X, YANG P, et al. Degradation of 3,3-iminobis-propanenitrile in aqueous solution by Fe0/GAC micro-electrolysis system[J]. Chemosphere, 2013, 90(4):1470-1477.
    [18] ZHANG S, WANG D, ZHOU L, et al. Intensified internal electrolysis for degradation of methylene blue as model compound induced by a novel hybrid material:multi-walled carbon nanotubes immobilized on zero-valent iron plates (Fe0-CNTs)[J]. Chemical Engineering Journal, 2013, 217:99-107.
    [19] 樊金红,马鲁铭,高廷耀.溶解氧对催化铁内电解法预处理混合废水的影响[J].水处理技术, 2007,33(10):71-74.
    [20] SHIMIZU A, TOKUMURA M, NAKAJIMA K, et al. Phenol removal using zero-valent iron powder in the presence of dissolved oxygen:roles of decomposition by the Fenton reaction and adsorption/precipitation[J]. Journal of Hazardous Materials, 2012, 201(30):60-67.
    [21] XIAO J N, YUE Q Y, GAO B Y, et al. Performance of activated carbon/nanoscale zero-valent iron for removal of trihalomethanes (THMs) at infinitesimal concentration in drinking water[J]. Chemical Engineering Journal, 2014, 252:63-72.
    [22] ZHANG X B, DONG W Y, SUN F Y, et al. Degradation efficiency and mechanism of azo dye RR2 by a novel ozone aerated internal micro-electrolysis filter[J]. Journal of Hazardous Materials, 2014, 276:77-87.
    [23] 李俊波,杨健,杨智迪,等.铁碳微电解法预处理印染废水的正交实验研究[J].工业安全与环保, 2017, 43(9):12-15.
    [24] 黄新仁.响应面法在生物过程优化中的应用[D].长沙:湖南大学, 2011.
    [25] SUN X, KUROKAWA T, SUZUKI M, et al. Removal of cationic dye methylene blue by zero valent iron effects of pH and dissolved oxygen on removal mechanisms[J]. Journal of Environmental Science and Health, Part A, 2015, 50(10):1057-1071.
  • 期刊类型引用(12)

    1. 文玉玲,王加俊. 陈腐垃圾掺烧对生活垃圾焚烧厂飞灰稳定化的影响研究. 清洗世界. 2024(04): 47-50 . 百度学术
    2. 王湘徽,朱悦,陈润生. 填埋场陈腐垃圾筛上物热值及掺烧对焚烧炉运行工况影响研究——以云南省某市陈腐垃圾掺烧为例. 环境卫生工程. 2024(02): 53-62 . 百度学术
    3. 张效刚,齐添,宋树祥,陈彬荣,张玉飞,陈晓强,张乐,李慈花,李一鸣. 我国南方某生活垃圾填埋场存量垃圾开挖作业案例分析. 环境工程. 2024(05): 90-97 . 本站查看
    4. 唐剑云,肖信彤. 陈腐垃圾资源化技术研究. 环境保护与循环经济. 2024(06): 4-7 . 百度学术
    5. 李敏,魏亮. 生活垃圾填埋场陈腐垃圾资源化利用研究进展. 中国资源综合利用. 2024(06): 162-164 . 百度学术
    6. 曾武清,王予,卜庆国,马硕,白东明,张宗建,张鹏,马丹丹,王圣博,王润其,武丽雯,刘晨,马洪亭. 陈腐垃圾掺烧对垃圾炉焚烧特性的影响. 化工进展. 2024(08): 4642-4653 . 百度学术
    7. 黄静颖,焦学军,龙吉生. 垃圾焚烧发电项目碳排放计算对比. 浙江大学学报(工学版). 2024(11): 2338-2346 . 百度学术
    8. 杨旭,余昭胜,何玉荣,宾衍辉,马晓茜. 垃圾焚烧炉中城市生活垃圾掺烧高热值工业固废的数值模拟. 洁净煤技术. 2023(09): 98-108 . 百度学术
    9. 李水江,张效刚,谈强,陈晓强,李耀晃,刘金海,张乐,张楠. 我国南方某生活垃圾填埋场存量垃圾直接开挖掺烧中试. 环境工程. 2023(08): 196-201 . 本站查看
    10. 孙子维,张雨轩,唐玉婷,王思琪,唐杰洪,马晓茜. 城市生活垃圾与陈腐垃圾掺烧的燃烧特性与反应动力学分析. 环境卫生工程. 2023(06): 1-10 . 百度学术
    11. 朱浩,喻武,薛浩,马晓玲. 垃圾焚烧炉排炉掺烧工业有机固废运行优化调控研究. 环境卫生工程. 2023(06): 11-15 . 百度学术
    12. 李德波,陈兆立,陈智豪,冯永新,黄梓淦,韦琛,马晓茜. 垃圾焚烧炉掺烧陈腐垃圾及其配风优化的数值模拟. 环境工程. 2022(11): 113-119 . 本站查看

    其他类型引用(3)

  • 加载中
计量
  • 文章访问数:  279
  • HTML全文浏览量:  27
  • PDF下载量:  31
  • 被引次数: 15
出版历程
  • 收稿日期:  2021-01-23
  • 网络出版日期:  2022-09-02

目录

    /

    返回文章
    返回