ANALYSIS OF SOIL POLLUTION AND HEALTH RISK ASSESSMENT OF CHEMICAL
-
摘要: 为了减少固体废弃物填埋场对居民和环境的影响,以江苏省某固体废弃物填埋场为研究对象开展健康风险评估。采集研究区域土壤样品,分析As、Ni、Cd、Zn、Pb、Hg等重金属含量,分别应用克里金插值、化学质量平衡形态模拟、健康风险评估模型方法,对目标重金属浓度空间分布、重金属形态种类及区域健康风险水平进行研究。结果表明:该地区主要受固体废弃物填埋及农田过量施肥污染。其中,Cd和Zn含量均超过土壤背景值,汞含量接近背景值。模拟获得Cd金属形态15种,Zn金属形态21种,对金属形态浓度进行健康风险评估,得出CdCO3、Cd2+具有致癌风险,总贡献率分别为38.4%和31.9%;Zn2S32-具有非致癌风险,总贡献率为91.66%。Cd2+的致癌风险值在10-6~10-4,其致癌风险水平不可忽视。因此,研究区域重金属形态对人体的毒性应引起人们的重视。Abstract: To reduce the impact of landfills on residents and the environment when performing landfill operation,a solid waste landfill site in Jiangsu Province was taken as the research object to carry out a health risk assessment.Soil samples in the study area were collected and analysed to obtain the contents of heavy metals such as As,Ni,Cd,Zn,Pb,and Hg.Kriging interpolation,chemical mass balance morphological simulation,and health risk assessment models were applied respectively.The concentration spatial distribution,speciation,and regional health risk of heavy metals were studied.The results showed that the area was mainly polluted by solid waste landfills and over-fertilization of agricultural land.The contents of Cd and Zn were higher than the soil background values,and Hg content was close to the background value.15 types of metal forms of Cd and 21 metal forms of Zn were obtained by simulation.A health risk assessment was conducted on the obtained metal species,and it was concluded that Cd2+ and CdCO3 had carcinogenic risks,with total contribution rates of 38.4% and 31.9%,respectively.But Zn2S32- metal form had non-carcinogenic risk,and the total contribution rate was 91.66%.The carcinogenic risk of Cd2+ ranged from 10-6 to 10-4,and that's not ignorable.Therefore,the toxicity of heavy metal species to humans in the study area should be paid more attention to.
-
Key words:
- chemical mass balance /
- spatial interpolation /
- metal speciation /
- health risk assessment
-
[1] 李亚静,黄庭,谢哲宇,等.非正规垃圾填埋场土壤和地下水重金属污染特征与评价[J].地球与环境,2019,46(3):361-369. [2] 李鹏辉,邹晓燕,楼婕,等.不同季节垃圾填埋场周围重金属污染特征及评价[J].环境化学, 2018, 37(1):41-50. [3] 董晓丹.某大型垃圾填埋场环境调查分析[J].环境卫生工程, 2019, 27(6):25-29. [4] 杨敏,滕应,任文杰,等.石门雄黄矿周边农田土壤重金属污染及健康风险评估[J].土壤, 2016, 48(6):1172-1178. [5] 陈志良,周建民,蒋晓璐,等.典型电镀污染场地重金属污染特征与环境风险评价[J].环境工程技术学报, 2014, 4(1):80-84. [6] HOEHUN H, OLSON J R, LING B, et al. Analysis of heavy metal sources in soil using kriging interpolation on principal components[J]. Environmental Science Technology, 2014, 48(9):4999-5007. [7] GUSTAFSSON J P. Visual MINTEQ 3.0 User Guide[J]. Dep of Land&Water Resour Eng, 2012. [8] 白薇扬.三峡库区典型支流水库长寿湖汞的生物地球化学特征[D].成都:西南大学,2015. [9] 任宗玲,彭桂香,徐会娟,等.化学平衡计算模型软件在环境化学教学中的应用[J].广东化工,2017,44(14):271,273. [10] 刘芳,塔西甫拉提,特依拜,等.准东煤炭产业区周边土壤重金属污染与健康风险的空间分布特征[J].环境科学, 2016, 37(12):4815-4829. [11] 张丹丹,娄亚龙,张一梅,等.某铬矿山地下水中Cr (Ⅵ)的形态模拟[J].环境工程, 2018, 44(2):68-71,76. [12] YI Y J, YANG Z F, ZHANG S H. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin[J]. Environmental Pollution, 2011, 159(10):2575-2585. [13] WILDLING L P. Spatial variability:its documentation, accommodation and implication to soil survey[M]. Wageningen:Pudoc Publishers, 1985. [14] 陈洁,施维林,张一梅,等.电镀厂遗留场地污染分析及健康风险空间分布评价[J].环境工程, 2018, 36(4):153-159. [15] 瞿明凯,李卫东,张传荣,等.基于受体模型和地统计学相结合的土壤镉污染源解析[J].中国环境科学, 2013, 33(5):854-860. [16] 廖启林,刘聪,许艳,等.江苏省土壤元素地球化学基准值[J].中国地质, 2011, 38(5):1363-1378. [17] WANG S, CAI L M, WEN H H, et al. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China[J]. Science of the Total Environment, 2019, 655:92-101. [18] 生态环境部.国家市场监督管理总局. GB 36600-2018《土壤环境质量建设用地土壤污染风险管控标准(试行)》[S].北京:中国环境出版集团,2018. [19] 郭辉,康明亮,陈万良,等.镅在北山地下水中赋存形态及溶解度分析[J].辐射防护, 2016, 36(1):40-46. [20] 杨森,王永利,张志程,等.甘肃北山地下水中Pu的形态分布及影响因素[J].黄金, 2014(4):75-79. [21] LIU G N, TAO L, LIU X H, et al. Heavy metal speciation and pollution of agriculture soils along Jishui River in non-ferrous metal mine area in Jiangxi Province, China[J]. Journal of Geochemical Exploration, 2013, 132:156-163. [22] 徐真,陆春海,陈敏,等.西南某低放废物库场址地下水中铀的形态模拟[J].物理化学学报, 2015(增刊1):45-48. [23] 余铭明,李致春,孟祥嵩,等.城区河流沉积物污染评价方法研究进展[J].科技视界, 2020(16):273-275. [24] 杨子鹏,肖荣波,陈玉萍,等.华南地区典型燃煤电厂周边土壤重金属分布、风险评估及来源分析[J].生态学报, 2020, 40(14):1-13. [25] FEMANDES-MACIAS J C, GONZALEZ-MILLE D J, GARCIA-ARREOLA M E, et al. Integrated probabilistic risk assessment in sites contaminated with arsenic and lead by long-term mining liabilities in San Luis Potosi, Mexico[J]. Ecotoxicology and Environmental Safety, 2020, 197:110568. [26] 单爱琴,张威,周洪英,等.徐州市不同功能区重金属污染与健康风险评价[J].环境工程,2016,34(9):125-129. [27] 臧振远,赵毅,尉黎,等.北京市某废弃化工厂的人类健康风险评价[J].生态毒理学报, 2008, 3(1):48-54. [28] KHOSRAVI Y, ZAMANI A A, PARIZANGANEH A H, et al. Assessment of spatial distribution pattern of heavy metals surrounding a lead and zinc production plant in Zanjan Province, Iran[J]. Geoderma Regional, 2018, 12:10-17. [29] 尉文佳,叶华香,臧淑英,等.克钦湖沉积物重金属时空分布特征及风险评估[J].环境科学与技术, 2020, 43(10):34-42.
点击查看大图
计量
- 文章访问数: 355
- HTML全文浏览量: 32
- PDF下载量: 12
- 被引次数: 0