OPTIMIZATION OF INCINERATORS FOR HIGH CALORIFIC VALUE DOMESTIC WASTE
-
摘要: 采用数值模拟方法研究了燃用高热值生活垃圾的焚烧炉结构对燃烧安全、温度分布以及烟气特性的影响,对某650 t/d垃圾焚烧炉冷、热态进行模拟,探究了二次风温度、二次风布置方式以及后拱角度对炉内燃烧的影响。模拟结果显示:二次风温度由180℃降至25℃后,炉内整体平均温度下降约80℃,有利于缓解炉内结焦、高温腐蚀的问题;前墙下层二次风移至前拱后,二次风气流会形成"风幕",压迫可燃气体贴近炉排,可能造成炉排烧坏、进料口回火等问题;在此基础上将前拱二次风移至前墙后,第1烟道烟气充满度高、且温度分布更为均匀,同时第1烟道出口气体组分浓度满足GB 18485-2014《生活垃圾焚烧污染控制标准》,适合燃用高热值生活垃圾。Abstract: In this paper,the effects of incinerator structure on combustion safety,temperature distribution,and flue properties were investigated with numerical simulation.The cold and hot states of a 650 t/d municipal solid waste incinerator were simulated.And the effects of secondary air temperature,secondary air layout,and rear arch angle on the combustion in the incinerator were explored.The simulation results showed that the overall average temperature in the furnace decreased by about 80℃,as the temperature of secondary air decreased from 180℃ to 25℃.The overall temperature decrease was beneficial to alleviate the problems of coking and high-temperature corrosion in the furnace.When the secondary air in the lower part of the front wall moved to the front arch,the secondary airflow formed an "air curtain" and pressed the combustible gas close to the grate,which may cause problems such as grate burning and tempering at the feed port.On this basis,when moving the front arch secondary air behind the front wall,the first flue gas had higher fullness and a more uniform temperature distribution.And the gas component concentration at the outlet of the first flue complied with China's national standard,GB 18485-2014,Domestic Waste Incineration Pollution Control Standard,making the incinerator suitable when burning high calorific value domestic waste.
-
Key words:
- high calorific value /
- domestic waste /
- incinerator /
- numerical simulation /
- optimization
-
[1] 再协. 2020年全国大、中城市固体废物污染环境防治年报[J].中国资源综合利用, 2021, 39(1):4. [2] 陆子叶.垃圾分类新形势对垃圾焚烧行业的影响[J].环境与发展, 2020, 32(7):43-44. [3] 任中山,陈瑛,王永明,等.生活垃圾分类对垃圾焚烧发电产业发展影响的分析[J].环境工程,2021,39(6):150-153,206. [4] 屠进,沈又幸.影响垃圾焚烧发电厂效率主要因素的分析[J].浙江电力, 2000(6):32-34. [5] 赖志燚,马晓茜,余昭胜.前、后拱和二次风对垃圾焚烧炉燃烧影响研究[J].锅炉技术, 2011, 42(4):70-74. [6] 冯淋淋,施子福,周永刚,等.大型垃圾焚烧炉排炉协同焚烧污泥的数值模拟研究[J].环境卫生工程, 2020, 28(3):32-37. [7] NEIL T M, DUFFY,JOHN A E. Investigation of factors affecting channelling in fixed-bed solid fuel combustion using CFD[J]. Combustion and Flame,2013,160(10):2204-2220. [8] COLLAZO J, PORTEIRO J, PATIÑO D, et al. Numerical modeling of the combustion of densified wood under fixed-bed conditions[J]. Fuel,2012,93:149-159. [9] 费俊.层燃炉排上城市固体垃圾燃烧过程的数值模拟[D].哈尔滨:哈尔滨工业大学,2006. [10] 韩海燕.生物质层燃炉内燃烧特性的数值模拟研究[D].哈尔滨:哈尔滨工业大学,2012. [11] 季俊杰.燃煤链条锅炉燃烧的数值建模及配风与炉拱的优化设计[D].上海:上海交通大学,2008. [12] 林海.基于CFD的城市生活垃圾焚烧炉优化运行及烟气排放特性实验研究[D].广州:华南理工大学,2012. [13] 林海.基于CFD的城市生活垃圾焚烧炉优化运行及烟气排放特性实验研究[D].广州:华南理工大学, 2012. [14] 宁星星,马晓茜,胡志锋,等.城市生活垃圾焚烧炉深度空气分级数值模拟[J].环境污染与防治, 2016, 38(10):53-60,6. [15] 邬思柯.生物质锅炉内燃烧与轰燃特性研究[D].广州:华南理工大学, 2015. [16] 刘瑞媚,刘玉坤,王智化,等.垃圾焚烧炉排炉二次风配风的CFD优化模拟[J].浙江大学学报(工学版), 2017, 51(3):500-507. [17] 钟彪.垃圾焚烧炉结焦积灰问题及控制措施分析[J].科学技术创新, 2019(20):183-184. [18] 张钦华,余笑枫. 750 t/d垃圾焚烧炉的优化设计与CFD模拟验证[J].工业锅炉, 2020(4):9-14. [19] 刘效洲,余战英,蒋宏利,等.垃圾焚烧炉拱的结构设计及数值模拟[J].动力工程, 2002,22(4):1908-1911. [20] 王海川,曾祥浩,廖艳芬,等.大型城市生活垃圾焚烧炉配风优化数值模拟研究[J].化学工程与装备, 2020(2):10-11,9. [21] 刘先荣,罗翠红,唐玉婷,等.大型城市生活垃圾焚烧炉结构改造的数值模拟研究[J].锅炉技术, 2019, 50(5):64-70. [22] 生态环境部.国家市场监督管理总局. GB 18485-2014生活垃圾焚烧污染控制标准[S].北京:生态环境部办公厅,2019.
点击查看大图
计量
- 文章访问数: 273
- HTML全文浏览量: 39
- PDF下载量: 12
- 被引次数: 0