MUSHROOM RESIDUES IMPROVE THE SLUDGE SOLIDIFIED SOIL QUALITY AND ENHANCE RYEGRASS GROWTH
-
摘要: 针对淤泥固化土板结程度高,养分不足等缺陷,采用菌渣辅以MgSO4,通过物理掺和的方式改良固化土,用于园林绿化利用。通过对菌渣改良土的物理性状特性和养分含量分析、黑麦草种子发芽实验和盆栽实验,探究了菌渣掺量和粒径对淤泥固化土改良的影响。结果表明:淤泥固化土掺入40 g/kg的5~10 mm菌渣和0.2 g/kg MgSO4后改良效果最佳,黑麦草株高增加了32.3%,干重提高了126.7%。菌渣的疏松多孔可改善土壤孔隙结构、降低土壤容重、提升土壤保水性;MgSO4补充了缺失的有效镁和有效硫;菌渣自身的营养物质提升了土壤有机质、水解性氮、有效磷、速效钾等养分含量,进而提高土壤保肥能力。菌渣可作为土壤改良剂实现淤泥固化土的低成本改良利用。Abstract: Aiming at the defects of high hardening degree and insufficient nutrients of sludge solidified soil,the solidified soil was improved by physically mixing with mushroom residue and magnesium sulfate for landscaping.The effects of mushroom residue content and particle size on improvement of sludge solidified soil were studied by analysing the physical properties and nutrient content of mushroom residue improved soil,ryegrass seed germination test,and pot experiment.The results showed that the sludge solidified soil mixed with 40 g/kg with a particle size of 5~10 mm bacterial residue and 0.2 g/kg magnesium sulfate had the best effect.The plant height of ryegrass increased by 32.3% and the dry weight increased by 126.7%.Mushroom residue had loose and porous characteristics,which could improve soil pore structure,reduce soil bulk density and improve soil water retention;magnesium sulfate supplemented available magnesium and available sulfur in soil;and the nutrients of bacterial residue improved the content of soil organic matter,hydrolyzable nitrogen,available phosphorus,available potassium and other nutrients,and improved the ability of soil fertilizer retention.Bacterial residue can be used as a soil conditioner to realize the low-cost improvement and utilization of sludge solidified soil.
-
Key words:
- sludge /
- solidified soil /
- mushroom residue /
- ryegrass /
- resource utilization
-
[1] 冯强,易境,刘书敏,等.城市黑臭水体污染现状、治理技术与对策[J].环境工程, 2020,38(8):82-88. [2] 宁梓洁,王鑫.黑臭水体治理技术研究进展[J].环境工程, 2018,36(8):26-29. [3] 李鑫斐,黄佳音.疏浚清淤脱水工艺及工程应用进展[J].水运工程, 2020(增刊1):16-20, 56. [4] 周岩.茅洲河清淤及底泥处置工程施工方案研究[J].陕西水利, 2021(2):164-166. [5] 曾祥英,李尔,张杞蓉,等.武汉东湖通道湖底淤泥处理工程设计[J].中国给水排水, 2015,31(16):49-54. [6] 邱震寰,黄文海,罗金学,等.襄阳护城河清淤底泥处理工艺改进及工程设计[J].中国给水排水, 2020,36(4):95-99. [7] RAKSHITH S, SINGH D N. Utilization of dredged sediments:contemporary issues[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2016,143(3):04016025. [8] 张茅,杨迎春,郑琳琳,等.固化淤泥作为河湖堤岸绿化草种植土的应用研究[J].施工技术, 2020,49(18):13-15. [9] 张春雷,管非凡,李磊,等.中国疏浚淤泥的处理处置及资源化利用进展[J].环境工程, 2014,32(12):95-99. [10] 冯波,石鸿韬,陶润礼,等.环保疏浚底泥改良用于绿化种植土技术研究[C]//第十一届全国工程地质大会,武汉, 2020. [11] 石稳民,黄文海,罗金学,等.襄阳护城河清淤底泥资源化制备种植土工艺设计[J].中国给水排水, 2020,36(6):91-96. [12] 于海龙,吕贝贝,陈辉,等.基于食用菌的固体有机废弃物利用现状及展望[J].中国农学通报, 2014,30(14):305-309. [13] 周亚红,郝刚立,陈康.食用菌菌渣基础特性分析[J].湖北农业科学, 2014,53(9):2009-2012. [14] 栗方亮,王煌平,张青,等.菌渣对土壤性状和作物的影响及其再利用研究进展[J].中国农业科技导报, 2015,17(3):100-106. [15] 齐广耀,李增安,左杰,等.大球盖菇菌渣改良滨海盐碱土试验[J].山东农业科学, 2020,52(4):126-130. [16] 中华人民共和国住房和城乡建设部. CJ/T 340-2016绿化种植土壤[S].北京:中国标准出版社, 2016. [17] 章绍康,弓晓峰,林媛,等.人工鸟粪石对Cd污染土壤中黑麦草生长的影响[J].环境工程, 2021,39(9):193-198. [18] 韩璐,黄岁樑,王乙震.海河干流柱芯不同粒径沉积物中有机质和磷形态分布研究[J].农业环境科学学报, 2010,29(5):955-962. [19] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000. [20] 张琪,方海兰,黄懿珍,等.土壤阳离子交换量在上海城市土壤质量评价中的应用[J].土壤, 2005,37(6):679-682. [21] 于群英,熊冠庭.凤阳县土壤有效硫含量状况及硫肥对大豆营养的影响[J].安徽农学通报, 2005,11(6):83-84. [22] 徐畅,高明.土壤中镁的化学行为及生物有效性研究进展[J].微量元素与健康研究, 2007,24(5):51-54. [23] 李洁,张文强,金鑫,等.环渤海滨海湿地土壤磷形态特征研究[J].环境科学学报, 2015,35(4):1143-1151. [24] 熊雷.菌渣施用对农田土壤磷组分及作物磷吸收的影响研究[D].成都:四川农业大学, 2018. [25] 栗方亮,王煌平,张青,等.稻田施用菌渣土壤团聚体的组成及评价[J].生态与农村环境学报, 2015,31(3):340-345. [26] 任镇江,罗友进,魏朝富.农田土壤团聚体研究进展[J].安徽农业科学, 2011,39(2):1101-1105. [27] 沙志贵,肖华,罗保平,等.淤泥脱水固结技术在环保清淤工程中的应用[J].人民长江, 2013,44(11):64-66. [28] 陈世昌,常介田,吴文祥,等.菌渣还田对梨园土壤性状及梨果品质的影响[J].核农学报, 2012,26(5):821-827. [29] 罗婷.菌渣还田对土壤环境效应的影响研究[D].成都:四川农业大学, 2009. [30] 李用芳.食用菌菌渣的再利用[J].生物学通报, 2001(3):44-45. [31] 冯德庆,黄勤楼,黄秀声,等.菌渣对水稻生长性状、产量及土壤肥力的影响[J].中国土壤与肥料, 2012(1):74-77. [32] 冯振凯.长期菌渣还田对土壤磷素形态及有效性的影响[D].杭州:浙江农林大学, 2015.
点击查看大图
计量
- 文章访问数: 195
- HTML全文浏览量: 42
- PDF下载量: 7
- 被引次数: 0