EFFECT OF INSOLUBLE HEXAVALENT CHROMIUM ON REMEDIATION OF HEAVILY CHROMIUM-CONTAMINATED SOIL BY FLUSHING REDUCTION
-
摘要: 通过对某铬渣堆场的重度铬污染土壤进行解吸动力学和难溶态Cr (Ⅵ)还原实验,揭示限制重度铬污染土壤有效修复的关键因素。结果表明:室温下,采用柠檬酸淋洗可显著降低土壤中难溶态Cr (Ⅵ)浓度,将淋洗温度提高至90℃,可进一步显著降低难溶态Cr (Ⅵ)浓度。淋洗后土样中难溶态Cr (Ⅵ)浓度越低,其还原效果越好。供试土样经柠檬酸高温淋洗+FeSO4高温还原工艺修复后,Cr (Ⅵ)浓度从(1813.2±59.8) mg/kg降至(99.1±8.8) mg/kg。此外,淋洗实验中柠檬酸对难溶态Cr (Ⅵ)的还原可忽略不计;土样中残留的柠檬酸对土壤Cr (Ⅵ)的检测结果无显著影响。研究证明了难溶态Cr (Ⅵ)的还原效果是重度铬污染土壤修复的关键限制因素,结果可为铬污染土壤修复工艺研发提供参考。Abstract: To reveal the key factors that limit the remediation effectiveness of heavily chromium contaminated soil,the desorption kinetics,and insoluble Cr (Ⅵ) reduction experiments were carried out in this study.The results showed that leaching with citric acid could significantly reduce the concentration of insoluble Cr (Ⅵ) in soil samples at room temperature,and increasing the leaching temperature to 90℃ could further decrease the concentration of insoluble Cr (Ⅵ).The lower the concentration of insoluble Cr (Ⅵ) in the soil after leaching,the better the remediation effectiveness.For the soil samples used in this study,the concentration of Cr (Ⅵ) decreased from (1813.2±59.8) mg/kg to (99.1±8.8) mg/kg by high-temperature flushing with citric acid and high-temperature reduction with ferrous sulfate.In addition,the reduction of insoluble Cr (Ⅵ) by citric acid in the leaching experiment could be ignored and the residual citric acid in the soil sample had no significant effect on the detection results of Cr (Ⅵ) in soil.This study proved that the reduction effectiveness of insoluble Cr (Ⅵ) was the key limiting factor for the remediation of heavy chromium-contaminated soil,and provided a reference for the research and development of remediation technology for chromium contaminated soil.
-
Key words:
- chromium contaminated soil /
- insoluble Cr (Ⅵ) /
- citric acid /
- flushing /
- reduction
-
[1] HU S Y, LI D, MAN Y D, et al. Evaluation of remediation of Cr (Ⅵ)-contaminated soils by calcium polysulfide:Long-term stabilization and mechanism studies[J]. Science of the Total Environment, 2021, 790:148140. [2] LI D, JI G Z, HU J, et al. Remediation strategy and electrochemistry flushing&reduction technology for real Cr (Ⅵ)-contaminated soils[J]. Chemical Engineering Journal, 2018, 334:1281-1288. [3] ASTM. Standard test method for the determination of hexavalent chromium in workplace air by ion chromatography and spectrophotometric measurement using 1,5-diphenylcarbazide[S]. West Conshohocken:ASTM, 2013. [4] 生态环境部.土壤环境质量建设用地土壤污染风险管控标准(试行):GB 36600-2018[S].北京:中国环境科学出版社, 2018. [5] 王廷涛,郭贝,赵志辉.铬污染土壤原位修复技术试验研究[J].中国环保产业, 2021, 26(1):61-64. [6] 李丹丹,郝秀珍,周东美,等.淋洗法修复铬渣污染场地实验研究[J].农业环境科学学报, 2011, 30(12):2451-2457. [7] 金紫缘,李民敬,冯亮,等.镉污染稻田土壤淋洗剂筛选、条件优化及淋洗废水处理[C]//中国环境科学学会2021年科学技术年会——环境工程技术创新与应用分会场.天津, 2021. [8] 徐雷,代惠萍,魏树和.淋洗剂在重金属污染土壤修复中的研究进展[J].中国环境科学, 2021, 41(11):5237-5244. [9] 赵庆辉,王兴润,张增强.地下水六价铬运移的仿真及场地修复限值探讨[J].环境工程, 2011, 29(2):16-19. [10] 蒋越,李广辉,王东辉,等.天然有机酸和DTPA组合工艺对Cr (Ⅵ)污染土壤的淋洗修复[J].环境工程学报, 2020, 14(7):1903-1914. [11] HU S Y, LI D, QIN S Q, et al. Interference of sulfide with iron ions to the analysis of Cr (Ⅵ) by Method 3060a&Method 7196a[J]. Journal of Hazardous Materials, 2020, 398(5):122837. [12] 陶美彤.高浓度铬污染土壤淋洗修复效果及影响因素的研究[D].长春:吉林大学, 2019. [13] 湖南省环境保护厅.重金属污染场地土壤修复标准:DB43 T 1125-2016[S].湖南:湖南省环境保护厅, 2016. [14] EPA. Method 3060a, Alkaline Digestion for Hexavalent Chromium[S]. Washington, DC:U.S.EPA, 1996. [15] EPA. Method 7196a, Chromium, Hexavalent (Colorimetric)[S]. Washington, DC:U.S.EPA, 1992. [16] LI D, GUI C X, JI G Z, et al. An interpretation to Cr (Ⅵ) leaching concentration rebound phenomenon with time in ferrous-reduced Cr (Ⅵ)-bearing solid matrices[J]. Journal of Hazardous Materials, 2019, 378:120734. [17] 李琛.有机酸还原六价铬反应动力学及其影响因素研究[D].南京:南京农业大学, 2006. [18] LI N, LI X, WANG C P, et al. Desorption of Cd (Ⅱ) from tourmaline at acidic conditions:kinetics, equilibrium and thermodynamics[J]. Journal of Environmental Chemical Engineering, 2016, 4(1):30-36. [19] TRAN H N, NGUYEN D T, LE G T, et al. Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents:a systematic in-depth review[J]. Journal of Hazardous Materials, 2019, 373(5):258-270. [20] TIAN C X, WANG D, WANG J X, et al. Desorption of hexavalent chromium from active aerobic granular sludge:Effects of operation parameters on granular bioactivity and stability[J]. Bioresource Technology Reports, 2020, 11:100457. [21] 陈英旭,朱荫湄,袁可能,等.土壤中铬的化学行为研究Ⅱ.土壤对Cr (Ⅵ)吸附和还原动力学[J].环境科学学报, 1989, 9(2):137-143. [22] HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5):451-465. [23] BULBUL M S, KANTAR C, KESKIN S. Role of major groundwater ions on reductive Cr (Ⅵ) immobilization in subsurface systems with pyrite[J]. Water, Air,&Soil Pollution, 2016, 227(3):72. [24] DAI C, ZUO X B, CAO B, et al. Homogeneous and heterogeneous (Fe<i>x, Cr1-x)(OH)3 precipitation:implications for Cr sequestration[J]. Environmental Science&Technology, 2016, 50(4):1741-1749. [25] PAPASSIOPI N, VAXEVANIDOU K, CHRISTOU C, et al. Synthesis, characterization and stability of Cr (Ⅲ) and Fe (Ⅲ) hydroxides[J]. Journal of Hazardous Materials, 2014, 264:490-497. [26] JAMES B R, BARTLETT R J. Behavior of chromium in soils. Ⅶ. Adsorption and reduction of hexavalent forms[J]. Jenvironqual, 1983, 12(2):177-181. [27] GABRIEL C, RAPTOPOULOU C P, TERZIS A, et al. pH-specific synthesis and spectroscopic, structural, and magnetic studies of a chromium (Ⅲ)-citrate species. Aqueous solution speciation of the binary chromium (Ⅲ)-citrate system[J]. Inorganic Chemistry, 2007, 46(8):2998-3009. [28] 张佳,陈鸿汉,张岩坤,等.柠檬酸淋洗去除土壤中铬的实验研究[J].环境科学学报, 2015, 35(7):2247-2253. [29] 张文艺,陈婕,朱雷鸣,等.腐解稻草DOM提取液洗脱六价铬污染土壤试验研究[J].土木与环境工程学报, 2020, 42(4):1-7. [30] PAUL R W, CARL D P. Effect of temperature, ionic strength, background electrolytes, and Fe (Ⅲ) on the reduction of hexavalent chromium by soil humic substances[J]. Environmental Science&Technology, 1996, 30(8):2470-2477. [31] LI D, SUN D L, HU S Y, et al. Conceptual design and experiments of electrochemistry-flushing technology for the remediation of historically Cr (Ⅵ)-contaminated soil[J]. Chemosphere, 2016, 144:1823-1830. [32] 纪国柱.铬污染土壤焦亚硫酸钠电化学淋洗还原修复实验研究[D].重庆:重庆大学, 2018. [33] CHRYSOCHOOU M, FERREIRA D R, JOHNSTON C P. Calcium polysulfide treatment of Cr (Ⅵ)-contaminated soil[J]. Journal of Hazardous Materials, 2010, 179(3):650-657. [34] RASTAS A L, MAURICE C, KUMPIENE J, et al. The influence of temperature, pH/molarity and extractant on the removal of arsenic, chromium and zinc from contaminated soil[J]. Journal of Soils and Sediments, 2011, 11(8):1334-1344. [35] DIMITRIS D, MARIA C, HYUN M D, et al. Ettringite-induced heave in chromite ore processing residue (COPR) upon ferrous sulfate treatment[J]. Environmental Science&Technology, 2006, 40(18):5786-5792. [36] 生态环境部.土壤和沉积物六价铬的测定碱溶液提取-火焰原子吸收分光光度法:HJ 1082-2019[S].北京:中国环境科学出版社, 2020. [37] 秦仕强.经亚硫酸盐/焦亚硫酸盐处理的铬污染土壤中残留还原剂对Cr (Ⅵ)分析的影响研究[D].重庆:重庆大学, 2019. [38] HUG S J, LAUBSCHER H U, JAMES B R. Iron (Ⅲ) catalyzed photochemical reduction of chromium (Ⅵ) by oxalate and citrate in aqueous solutions[J]. Environmental Science&Technology, 1997, 31(1):160-170. [39] 高卫国,钱林波,韩璐,等.锰铁氧体吸附及催化柠檬酸还原六价铬的过程及机理[J].环境化学, 2018, 37(7):1525-1533.
点击查看大图
计量
- 文章访问数: 296
- HTML全文浏览量: 19
- PDF下载量: 7
- 被引次数: 0