SYNTHESIS,CHARACTERIZATION AND PERFORMANCE EVALUATION OF Ru-Ir ELECTRODE FOR ELECTROCATALYTIC TREATMENT FOR AMMONIA-NITROGEN WASTEWATER WITH HIGH CHLORIDE CONTENT
-
摘要: 研究了钌铱摩尔比对钌铱电极微观结构、化学性质、电化学性能和脱氮性能的影响。采用电化学方法测试了电极的电化学性能。结果表明:Ru-Ir固溶体为金红石晶体,晶粒分布均匀,连接紧密。随着Ir摩尔比的增加,Ru-Ir电极的电化学性能先升高后降低。当n(Ru):n(Ir)为2:1时,Ru2/3Ir1/3O2电极的电化学性能最佳。Ru2/3Ir1/3O2电极的析氯电位、腐蚀电流密度和电导率分别是RuO2电极的0.998,0.755,1.816倍。在处理高氯氨氮模拟废水时,利用合成电极氧化脱除氨氮的结果表明,Ru2/3Ir1/3O2电极的处理效果最好,当电流为0.5 A时,50 min内氨氮脱除率可达到75.2%,证明了电催化技术能有效处理高氯氨氮废水。
-
关键词:
- 高氯氨氮废水 /
- Ru-Ir摩尔比 /
- Ru2/3Ir1/3O2电极 /
- 电催化技术
Abstract: In this paper,the effect of the molar ratios of ruthenium (Ru)-iridium (Ir) on the microstructure,chemical properties,electrochemical performance,and denitrification performance of high ammonia-chloride wastewater were investigated.The results illustrated that Ru-Ir solid solution was a rutile crystal with uniform grain distribution and tight connection.The electrochemical performances of the electrodes were tested by electrochemical techniques.And the electrochemical performance of the Ru-Ir electrode first increased and then decreased with the increase of the molar ratio of Ir.The electrochemical properties of Ru2/3Ir1/3O2 electrodes were the best when the molar ratio of Ru-Ir was 2:1.The chlorine evolution potential,corrosion current density,and conductivity of Ru2/3Ir1/3O2 electrode were 0.998,0.755,and 1.816 times those of RuO2,respectively.In the removal process of ammonia-nitrogen in high chloride ammonia-nitrogen simulated wastewater,the electrode with the best removal effect of ammonia-nitrogen was Ru2/3Ir1/3O2 electrode,and when the current was 0.5 A,the ammonia-nitrogen removal rate could reach 75.2% in 50 minutes.This paper proved that electrocatalytic technology could effectively treat high chloride ammonia-nitrogen wastewater. -
[1] 周银芳. SBR工艺处理高含盐采油废水试验研究[D].西安:长安大学, 2010. [2] RIBEIRO J, ALVES P D, DE Andrade A R. Effect of the preparation methodology on some physical and electrochemical properties of Ti/Ir<i>xSn(1-x)O2 materials[J]. Journal of materials science, 2007,42(22):9293-9299. [3] ESCALANTE G I, DURON T S, CRUZ J, et al. Electrochemical characterization of IrO2-Pt and RuO2-Pt mixtures as bifunctional electrodes for unitized regenerative fuel cells[J]. Journal of New Matetials for Electrochemical Systems, 2010,13:227-233. [4] CRUZ J, HERNÁNDEZ A R, GUERRA B M, et al. Electrochemical evaluation of a Ir-Ru binary oxide for oxygen evolution reaction[J]. International Journal of Electrochemical Science, 2012,7(9):7866-7876. [5] CRUZ J, BAGLIO V, SIRACUSANO S, et al. Nanosized IrO2 electrocatalysts for oxygen evolution reaction in an SPE electrolyzer[J]. Journal of Nanoparticle Research, 2011,13(4):1639-1646. [6] AUDICHON T, MAYOUSSE E, MORISSET S, et al. Electroactivity of RuO2-IrO2 mixed nanocatalysts toward the oxygen evolution reaction in a water electrolyzer supplied by a solar profile[J]. International Journal of Hydrogen Energy, 2014,39(30):16785-16796. [7] MENZEL N, ORTEL E, METTE K, et al. Dimensionally stable Ru/Ir/TiO2-anodes with tailored mesoporosity for efficient electrochemical chlorine evolution[J]. ACS Catalysis, 2013,3(6):1324-1333. [8] SANTANA M H P, DE F L A. Oxygen and chlorine evolution on RuO2+TiO2+CeO2+Nb2O5 mixed oxide electrodes[J]. Electrochimica Acta, 2006,51(17):3578-3585. [9] WANG S W, XU H L, YAO P D, et al. Ti/RuO2-IrO2-SnO2-Sb2O5 anodes for Cl2 evolution from seawater[J]. Electrochemistry, 2012,80(7):507-511. [10] RUAN Y, LU C, GUO X, et al. Electrochemical treatment of recirculating aquaculture wastewater using a Ti/RuO2-IrO2 anode for synergetic total ammonia nitrogen and nitrite removal and disinfection[J]. Transactions of the ASABE, 2016,59(6):1831-1840. [11] WANG H, YANG Y, LIU X, et al. Decomposition of ammonia nitrogen from biologically pretreated coking wastewater with electrochemical three-dimensional Ti/RuO2/IrO2 electrodes[J]. Nature Environment and Pollution Technology, 2016,15(3):881-886. [12] HE S L, HUANG Q, ZHANG Y, et al. Investigation on direct and indirect electrochemical oxidation of ammonia over Ru-Ir/TiO2 anode[J]. Industrial&Engineering Chemistry Research, 2015,54(5):1447-1451. [13] WANG B, HOU S Z, HAN Y, et al. Recent status of development of metal oxide coated anode for antifouling by electrolyzing seawater[J]. Development&Application of Materials, 1998,13(1):42. [14] LI L, LIU Y. Ammonia removal in electrochemical oxidation:mechanism and pseudo-kinetics[J]. Journal of Hazardous Materials, 2009,161(2/3):1010-1016. [15] WANG J. Preparation of the ordered spherical Ru-RuO2 and electrocatalysis toward chlorine evolution reaction[J]. International Journal of Electrochemical Science, 2019:10187-10197.
点击查看大图
计量
- 文章访问数: 136
- HTML全文浏览量: 14
- PDF下载量: 6
- 被引次数: 0