CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环境功能材料界面性质对生物膜形成过程与代谢功能的调控机制

李瑞霆 张文锐 李爱民 双陈冬 周庆 施鹏

李瑞霆, 张文锐, 李爱民, 双陈冬, 周庆, 施鹏. 环境功能材料界面性质对生物膜形成过程与代谢功能的调控机制[J]. 环境工程, 2022, 40(7): 206-221,178. doi: DOI:10.13205/j.hjgc.202207030
引用本文: 李瑞霆, 张文锐, 李爱民, 双陈冬, 周庆, 施鹏. 环境功能材料界面性质对生物膜形成过程与代谢功能的调控机制[J]. 环境工程, 2022, 40(7): 206-221,178. doi: DOI:10.13205/j.hjgc.202207030
LI Ruiting, ZHANG Wenrui, LI Aimin, SHUANG Chendong, ZHOU Qing, SHI Peng. REGULATORY MECHANISM OF INTERFACE PROPERTIES OF ENVIRONMENTAL FUNCTIONAL MATERIALS ON BIOFILM FORMATION AND METABOLIC FUNCTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 206-221,178. doi: DOI:10.13205/j.hjgc.202207030
Citation: LI Ruiting, ZHANG Wenrui, LI Aimin, SHUANG Chendong, ZHOU Qing, SHI Peng. REGULATORY MECHANISM OF INTERFACE PROPERTIES OF ENVIRONMENTAL FUNCTIONAL MATERIALS ON BIOFILM FORMATION AND METABOLIC FUNCTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 206-221,178. doi: DOI:10.13205/j.hjgc.202207030

环境功能材料界面性质对生物膜形成过程与代谢功能的调控机制

doi: DOI:10.13205/j.hjgc.202207030
基金项目: 

泉州市高层次人才项目(2018CT006)

江苏省重点研发社会发展项目(BE2019708)

中央高校基本科研经费(021114380169)

详细信息
    作者简介:

    李瑞霆(1998-),女,硕士研究生,主要研究方向为管网输送过程中生物膜形成机制。retty_lee@163.com

    通讯作者:

    施鹏(1988-),男,博士,副教授,主要研究方向为环境功能材料研发与应用。shipeng@nju.edu.cn

REGULATORY MECHANISM OF INTERFACE PROPERTIES OF ENVIRONMENTAL FUNCTIONAL MATERIALS ON BIOFILM FORMATION AND METABOLIC FUNCTION

  • 摘要: 材料表面生物膜形成对环境与人类生产的影响纷繁复杂,关于环境功能材料与微生物之间的界面作用关系尚无系统阐述。介绍了材料表面生物膜的形成过程,重点解析了材料表面疏水性、形态特征、表面电荷、磁性、物质释放与电子传递等物理化学性质对生物膜形成的调控机制;综述了材料对生物膜微生物群落结构与代谢功能的影响,并且论证了不同环境功能材料与生物膜在水处理系统、废气生物处理和土壤生态修复领域协同降解污染物的潜在机制和应用情况;最后展望了材料与微生物相互作用的未来研究方向。拟为环境功能材料表面生物膜的形成与控制调控,充分发挥两者协同作用以及定向指导材料合成提供理论和技术支撑。
  • [1] COGAN N G. Microbial biofilms:persisters, tolerance and dosing[C]//1st ISIS International Symposium on Interdisciplinary Science. LA, 2005:190-197.
    [2] KOLTER R. Surfacing views of biofilm biology[J]. Trends in Microbiology, 2005, 13(1):1-2.
    [3] BHINU V S. Insight into biofilm-associated microbial life[J]. Journal of Molecular Microbiology and Biotechnology, 2005, 10(1):15-21.
    [4] 雒江菡.大型原水输水管道水质模拟及生物膜净水功能研究[D].哈尔滨:哈尔滨工业大学, 2016.
    [5] PRATT L A, KOLTER R. Genetic analysis of Escherichia coli biofilm formation:roles of flagella, motility, chemotaxis and type I pili[J]. Molecular Microbiology, 1998, 30(2):285-293.
    [6] HONG S H, HEGDE M, KIM J, et al. Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device[J]. Nature Communications, 2012, 3:613.
    [7] 张天震,刘伶普,李文超,等.群体感应系统介导细菌生物膜形成的研究进展[J].生物加工过程, 2020, 18(2):177-183.
    [8] PLOUX L, PONCHE A, ANSELME K. Bacteria/material interfaces:role of the material and cell wall properties[J]. Journal of Adhesion Science and Technology, 2010, 24(13/14):2165-2201.
    [9] LE T H, NG C, TRAN N H, et al. Removal of antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater by membrane bioreactor systems[J]. Water Research, 2018, 145:498-508.
    [10] BARNHARST T, RAJENDRAN A, HU B. Bioremediation of synthetic intensive aquaculture wastewater by a novel feed-grade composite biofilm[J]. International Biodeterioration&Biodegradation, 2018, 126:131-142.
    [11] 刘世红,田耀华.橡胶树抗寒性研究现状与展望[J].广东农业科学, 2009(11):26-28.
    [12] BHATTACHARYYA P N, JHA D K. Plant growth-promoting rhizobacteria (PGPR):emergence in agriculture[J]. World Journal of Microbiology&Biotechnology, 2012, 28(4):1327-1350.
    [13] 刘慧娜,孙吉慧,沈加艳.给水管网中管壁生物膜对水质二次污染的影响[J].环保科技, 2009, 15(4):9-13.
    [14] CHAO Y S, MARKS L R, PETTIGREW M M, et al. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease[J]. Frontiers in Cellular and Infection Microbiology, 2015, 4:194.
    [15] WANG Z J, SHEN Y, HAAPASALO M. Dental materials with antibiofilm properties[J]. Dental Materials, 2014, 30(2):E1-E16.
    [16] XU D K, XIA J, ZHOU E Z, et al. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm[J]. Bioelectrochemistry, 2017, 113:1-8.
    [17] HALL-STOODLEY L, STOODLEY P. Biofilm formation and dispersal and the transmission of human pathogens[J]. Trends in Microbiology, 2005, 13(1):7-10.
    [18] BAUMGARTEN T, SPERLING S, SEIFERT J, et al. Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation[J]. Applied and Environmental Microbiology, 2012, 78(17):6217-6224.
    [19] 张明露,徐绍峰,徐梦瑶,等.给水管网多相界面中微生物表面疏水性研究[J].中国环境科学, 2019, 39(11):4823-4830.
    [20] CERCA N, PIER G B, VILANOVA M, et al. Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis[J]. Research in Microbiology, 2005, 156(4):506-514.
    [21] SCHIFFER C, HILGARTH M, EHRMANN M, et al. Bap and cell surface hydrophobicity are important factors in Staphylococcus xylosus biofilm formation[J]. Frontiers in Microbiology, 2019, 10:1387.
    [22] 祝泽兵,吴晨光,钟丹,等.管材和流速对供水管道生物膜形成的影响[J].哈尔滨工业大学学报, 2014, 46(10):31-36.
    [23] NEJADNIK M R, van DER MEI H C, NORDE W, et al. Bacterial adhesion and growth on a polymer brush-coating[J]. Biomaterials, 2008, 29(30):4117-4121.
    [24] WEI T, YU Q, CHEN H. Responsive and synergistic antibacterial coatings:fighting against bacteria in a smart and effective way[J]. Advanced Healthcare Materials, 2019, 8(3):1801381.
    [25] PARK H H, SUN K, SEONG M, et al. Lipid-hydrogel-nanostructure hybrids as robust biofilm-resistant polymeric materials[J]. ACS Macro Letters, 2019, 8(1):64-69.
    [26] RODRIGUEZ-MELCON C, ALONSO-CALLEJA C, CAPITA R. Architecture and viability of the biofilms formed by nine Listeria strains on various hydrophobic and hydrophilic materials[J]. Applied Sciences-Basel, 2019, 9(23):5256.
    [27] ANDERSEN T E, KINGSHOTT P, PALARASAH Y, et al. A flow chamber assay for quantitative evaluation of bacterial surface colonization used to investigate the influence of temperature and surface hydrophilicity on the biofilm forming capacity of uropathogenic Escherichia coli[J]. Journal of Microbiological Methods, 2010, 81(2):135-140.
    [28] PONTES C, ALVES M, SANTOS C, et al. Can sophorolipids prevent biofilm formation on silicone catheter tubes?[J]. International Journal of Pharmaceutics, 2016, 513(1/2):697-708.
    [29] YU J, KIM D, LEE T. Microbial diversity in biofilms on water distribution pipes of different materials[J]. Water Science and Technology, 2010, 61(1):163-171.
    [30] BEYTH N, BAHIR R, MATALON S, et al. Streptococcus mutans biofilm changes surface-topography of resin composites[J]. Dental Materials, 2008, 24(6):732-736.
    [31] SINGH A V, VYAS V, PATIL R, et al. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation[J]. PLoS One, 2011, 6(9):e25029.
    [32] SAKAMOTO A, TERUI Y, HORIE C, et al. Antibacterial effects of protruding and recessed shark skin micropatterned surfaces of polyacrylate plate with a shallow groove[J]. Fems Microbiology Letters, 2014, 361(1):10-16.
    [33] MANN E E, MANNA D, METTETAL M R, et al. Surface micropattern limits bacterial contamination[J]. Antimicrobial Resistance and Infection Control, 2014, 3:28.
    [34] DOLID A, GOMES L C, MERGULHAO F J, et al. Combining chemistry and topography to fight biofilm formation:Fabrication of micropatterned surfaces with a peptide-based coating[J]. Colloids and Surfaces B-Biointerfaces, 2020, 196:111365.
    [35] CHIEN H W, CHEN X Y, TSAI W P, et al. Inhibition of biofilm formation by rough shark skin-patterned surfaces[J]. Colloids and Surfaces B-Biointerfaces, 2020, 186:110738.
    [36] IZQUIERDO-BARBA I, GARCIA-MARTIN J M, ALVAREZ R, et al. Nanocolumnar coatings with selective behavior towards osteoblast and Staphylococcus aureus proliferation[J]. Acta Biomaterialia, 2015, 15:20-28.
    [37] EPSTEIN A K, HONG D, KIM P, et al. Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces[J]. New Journal of Physics, 2013, 15:095018.
    [38] HOCHBAUM A I, AIZENBERG J. Bacteria pattern spontaneously on periodic nanostructure arrays[J]. Nano Letters, 2010, 10(9):3717-3721.
    [39] SINGH S P, RAMANAN S, KAUFMAN Y, et al. Laser-induced graphene biofilm inhibition:texture does matter[J]. ACS Applied Nano Materials, 2018, 1(4):1713-1720.
    [40] GOULTER R M, GENTLE I R, DYKES G A. Issues in determining factors influencing bacterial attachment:a review using the attachment of Escherichia coli to abiotic surfaces as an example[J]. Letters in Applied Microbiology, 2009, 49(1):1-7.
    [41] SONG F, KOO H, REN D. Effects of material properties on bacterial adhesion and biofilm formation[J]. Journal of Dental Research, 2015, 94(8):1027-1034.
    [42] RZHEPISHEVSKA O, HAKOBYAN S, RUHAL R, et al. The surface charge of anti-bacterial coatings alters motility and biofilm architecture[J]. Biomaterials Science, 2013, 1(6):589-602.
    [43] TARJANYI-SZIKORA S, OLAH J, MAKO M, et al. Comparison of different granular solids as biofilm carriers[J]. Microchemical Journal, 2013, 107:101-107.
    [44] TERADA A, OKUYAMA K, NISHIKAWA M, et al. The effect of surface charge property on Escherichia coli initial adhesion and subsequent biofilm formation[J]. Biotechnology and Bioengineering, 2012, 109(7):1745-1754.
    [45] TERADA A, YUASA A, KUSHIMOTO T, et al. Bacterial adhesion to and viability on positively charged polymer surfaces[J]. Microbiology-Sgm, 2006, 152:3575-3583.
    [46] 江宇勤,厉炯慧,方治国.多孔填料特性对生物膜形成影响[J].环境科学, 2020, 41(8):3684-3690.
    [47] CAMPOCCIA D, MONTANARO L, ARCIOLA C R. A review of the biomaterials technologies for infection-resistant surfaces[J]. Biomaterials, 2013, 34(34):8533-8554.
    [48] GAO Q, LI P, ZHAO H Y, et al. Methacrylate-ended polypeptides and polypeptoids for antimicrobial and antifouling coatings[J]. Polymer Chemistry, 2017, 8(41):6386-6397.
    [49] MURATA H, KOEPSEL R R, MATYJASZEWSKI K, et al. Permanent, non-leaching antibacterial surfaces-2:how high density cationic surfaces kill bacterial cells[J]. Biomaterials, 2007, 28(32):4870-4879.
    [50] CHAVANT P, MARTINIE B, MEYLHEUC T, et al. Listeria monocytogenes LO28:surface physicochemical properties and ability to form biofilms at different temperatures and growth phases[J]. Applied and Environmental Microbiology, 2002, 68(2):728-737.
    [51] CHUA L Y, YEO S H. Surface bio-magnetism on bacterial cells adhesion and surface proteins secretion[J]. Colloids and Surfaces B-Biointerfaces, 2005, 40(1):45-49.
    [52] 卫晓阳, MASOUMEH M,杨丽景,等.磁场对纯Cu微生物腐蚀行为的影响[J].中国腐蚀与防护学报, 2019, 39(6):484-494.
    [53] 周慧慧.磁性材料和磁场强化微生物电化学系统电子转移的机理研究[D].哈尔滨:哈尔滨工业大学, 2020.
    [54] SAUNDERS R. Static magnetic fields:animal studies[J]. Progress in Biophysics&Molecular Biology, 2005, 87(2/3):225-239.
    [55] QUAN K C, ZHANG Z X, CHEN H, et al. Artificial channels in an infectious biofilm created by magnetic nanoparticles enhanced bacterial killing by antibiotics[J]. Small, 2019, 15(39):1902313.
    [56] LI L L, YU P F, WANG X F, et al. Enhanced biofilm penetration for microbial control by polyvalent phages conjugated with magnetic colloidal nanoparticle clusters (cncs)[J]. Environmental Science-Nano, 2017, 4(9):1817-1826.
    [57] QUAN K C, ZHANG Z X, REN Y J, et al. Homogeneous distribution of magnetic, antimicrobial-carrying nanoparticles through an infectious biofilm enhances biofilm-killing efficacy[J]. Acs Biomaterials Science&Engineering, 2020, 6(1):205-212.
    [58] VO D T, SABRINA S, LEE C K. Silver deposited carboxymethyl chitosan-grafted magnetic nanoparticles as dual action deliverable antimicrobial materials[J]. Materials Science&Engineering C-Materials for Biological Applications, 2017, 73:544-551.
    [59] 田小飞,张欣.稳态强磁场的细胞生物学效应[J].物理学报, 2018, 67(14):19-29.
    [60] 季晓妮,汲平.静磁场的细胞生物学效应的研究进展[J].口腔颌面修复学杂志, 2010, 11(2):126-128.
    [61] 智丽媛,杜莉.静磁场的细胞生物学效应的研究[J].广东牙病防治, 2008(增刊1):650-652.
    [62] WANG Z B, LIU X L, NI S Q, et al. Weak magnetic field:a powerful strategy to enhance partial nitrification[J]. Water Research, 2017, 120:190-198.
    [63] LEHTOLA M J, MIETTINEN K T, KEINANEN M M, et al. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes[J]. Water Research, 2004, 38(17):3769-3779.
    [64] 海景,温勇,皮丕辉,等.营养缓释型生物填料的制备及在废水处理中的应用[J].中山大学学报(自然科学版), 2008,(1):68-72.
    [65] LIU Y H, KOHNO T, TSUBOI R, et al. Acidity-induced release of zinc ion from BioUnion (TM) filler and its inhibitory effects against Streptococcus mutans[J]. Dental Materials Journal, 2020, 39(4):547-553.
    [66] CUMMINS D. Zinc citrate triclosan-a new anti-plaque system for the control of plaque and the prevention of gingivitis-short-term clinical and mode of action studies[J]. Journal of Clinical Periodontology, 1991, 18(6):455-461.
    [67] JIN G D, CAO H L, QIAO Y Q, et al. Osteogenic activity and antibacterial effect of zinc ion implanted titanium[J]. Colloids and Surfaces B-Biointerfaces, 2014, 117:158-165.
    [68] HAHNEL S, IONESCU A C, CAZZANIGA G, et al. Biofilm formation and release of fluoride from dental restorative materials in relation to their surface properties[J]. Journal of Dentistry, 2017, 60:14-24.
    [69] LIAO Y, BRANDT B W, LI J Y, et al. Fluoride resistance in Streptococcus mutans:a mini review[J]. Journal of Oral Microbiology, 2017, 9(1):1344509.
    [70] PANDIT S, JUNG J E, CHOI H M, et al. Effect of brief periodic fluoride treatments on the virulence and composition of a cariogenic biofilm[J]. Biofouling, 2018, 34(1):53-61.
    [71] FLEMING G, AVEYARD J, FOTHERGILL J L, et al. Nitric oxide releasing polymeric coatings for the prevention of biofilm formation[J]. Polymers, 2017, 9(11):601.
    [72] PRIVETT B J, NUTZ S T, SCHOENFISCH M H. Efficacy of surface-generated nitric oxide against Candida albicans adhesion and biofilm formation[J]. Biofouling, 2010, 26(8):973-983.
    [73] BARRAUD N, KELSO M J, RICE S A, et al. Nitric Oxide:a key mediator of biofilm dispersal with applications in infectious diseases[J]. Current Pharmaceutical Design, 2015, 21(1):31-42.
    [74] 张素佳,王海波,赵丹,等.不同管网腐蚀与水质稳定性中试研究[J].中国给水排水, 2018, 34(13):66-70.
    [75] 董耀华,贺中意,郭娜,等.海洋微生物在船舶用结构钢表面附着成膜过程及其腐蚀研究[J].海洋学研究, 2015, 33(1):39-44.
    [76] MCNEILL L S, EDWARDS M. Iron pipe corrosion in distribution systems[J]. Journal American Water Works Association, 2001, 93(7):88-100.
    [77] WEBER K A, ACHENBACH L A, COATES J D. Microorganisms pumping iron:anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 2006, 4(10):752-764.
    [78] WANG H B, HU C, HAN L C, et al. Effects of microbial cycling of Fe (Ⅱ)/Fe (Ⅲ) and Fe/N on cast iron corrosion in simulated drinking water distribution systems[J]. Corrosion Science, 2015, 100:599-606.
    [79] WANG H B, HU C, ZHANG L L, et al. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems[J]. Water Research, 2014, 65:362-370.
    [80] PROCOPIO L. The role of biofilms in the corrosion of steel in marine environments[J]. World Journal of Microbiology&Biotechnology, 2019, 35(5):73.
    [81] MELCHERS R E, JEFFREY R J. Accelerated low water corrosion of steel piling in harbours[J]. Corrosion Engineering Science and Technology, 2013, 48(7):496-505.
    [82] YIN Q D, WU G X. Advances in direct interspecies electron transfer and conductive materials:electron flux, organic degradation and microbial interaction[J]. Biotechnology Advances, 2019, 37(8):107443.
    [83] 李政,张珩琳,范书伶,等.金属元素与环境微生物的互作关系研究进展[J].应用与环境生物学报, 2020, 26(4):836-843.
    [84] LIU P P, LIANG P, JIANG Y, et al. Stimulated electron transfer inside electroactive biofilm by magnetite for increased performance microbial fuel cell[J]. Applied Energy, 2018, 216:382-388.
    [85] VIGGI C C, ROSSETTI S, FAZI S, et al. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation[J]. Environmental Science&Technology, 2014, 48(13):7536-7543.
    [86] JEONG H E, KIM I, KARAM P, et al. Bacterial recognition of silicon nanowire arrays[J]. Nano Letters, 2013, 13(6):2864-2869.
    [87] ZHANG P, LIU J, QU Y P, et al. Nanomaterials for facilitating microbial extracellular electron transfer:recent progress and challenges[J]. Bioelectrochemistry, 2018, 123:190-200.
    [88] 刘姝睿,吴雪娥,王远鹏.纳米材料介导微生物胞外电子传递过程的研究进展[J].化工学报,2021,72(7):3576-3589.
    [89] XIE X, YE M, HU L B, et al. Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes[J]. Energy&Environmental Science, 2012, 5(1):5265-5270.
    [90] ZOU L, HUANG Y H, WU X, et al. Synergistically promoting microbial biofilm growth and interfacial bioelectrocatalysis by molybdenum carbide nanoparticles functionalized graphene anode for bioelectricity production[J]. Journal of Power Sources, 2019, 413:174-181.
    [91] XU L C, WO Y, MEYERHOFF M E, et al. Inhibition of bacterial adhesion and biofilm formation by dual functional textured and nitric oxide releasing surfaces[J]. Acta Biomaterialia, 2017, 51:53-65.
    [92] 张盾,吴佳佳.海洋环境微生物腐蚀机理研究进展[J].海洋与湖沼, 2020, 51(4):821-828.
    [93] VALERO D, RICO C, CANTO-CANCHE B, et al. Enhancing biochemical methane potential and enrichment of specific electroactive communities from nixtamalization wastewater using granular activated carbon as a conductive material[J]. Energies, 2018, 11(8):2101.
    [94] BYRNE J M, KLUEGLEIN N, PEARCE C, et al. Redox cycling of Fe (Ⅱ) and Fe (Ⅲ) in magnetite by Fe-metabolizing bacteria[J]. Science, 2015, 347(6229):1473-1476.
    [95] MIAO L Z, WANG P F, HOU J, et al. Distinct community structure and microbial functions of biofilms colonizing microplastics[J]. Science of the Total Environment, 2019, 650:2395-2402.
    [96] PHILIPPOT L, SPOR A, HENAULT C, et al. Loss in microbial diversity affects nitrogen cycling in soil[J]. Isme Journal, 2013, 7(8):1609-1619.
    [97] GIRVAN M S, CAMPBELL C D, KILLHAM K, et al. Bacterial diversity promotes community stability and functional resilience after perturbation[J]. Environmental Microbiology, 2005, 7(3):301-313.
    [98] WU X J, PAN J, LI M, et al. Selective enrichment of bacterial pathogens by microplastic biofilm[J]. Water Research, 2019, 165:114979.
    [99] YOSHIDA S, HIRAGA K, TAKEHANA T, et al. A bacterium that degrades and assimilates poly (ethylene terephthalate)[J]. Science, 2016, 351(6278):1196-1199.
    [100] LI W Y, TAN Q W, ZHOU W, et al. Impact of substrate material and chlorine/chloramine on the composition and function of a young biofilm microbial community as revealed by high-throughput 16S rRNA sequencing[J]. Chemosphere, 2020, 242:125310.
    [101] LIU R Y, ZHU J G, YU Z S, et al. Molecular analysis of long-term biofilm formation on PVC and cast iron surfaces in drinking water distribution system[J]. Journal of Environmental Sciences, 2014, 26(4):865-874.
    [102] QIN Z R, ZHAO Z H, JIAO W T, et al. Phenanthrene removal and response of bacterial community in the combined system of photocatalysis and PAH-degrading microbial consortium in laboratory system[J]. Bioresource Technology, 2020, 301:122736.
    [103] JI Y B, TAN C, CUI D, et al. Enhanced effects of tourmaline on moving bed biofilm reactor-based partial nitrification process[J]. Journal of Environmental Engineering, 2019, 145(4):04019009.
    [104] 肖坤,郝婧薇,王艺,等.循环水养殖系统微滤机过滤对调节水体细菌群落结构的影响[J].渔业现代化, 2021, 48(3):67-73.
    [105] SHI J X, HAN Y X, XU C Y, et al. Enhanced biodegradation of coal gasification wastewater with anaerobic biofilm on polyurethane (PU), powdered activated carbon (PAC), and biochar[J]. Bioresource Technology, 2019, 289:121487.
    [106] WANG R, XU Q, CHEN C L, et al. Microbial nitrogen removal in synthetic aquaculture wastewater by fixed-bed baffled reactors packed with different biofilm carrier materials[J]. Bioresource Technology, 2021, 331:125045.
    [107] FU Y, PENG H, LIU J, et al. Occurrence and quantification of culturable and viable but non-culturable (VBNC) pathogens in biofilm on different pipes from a metropolitan drinking water distribution system[J]. The Science of the Total Environment, 2020:142851.
    [108] GIAO M S, WILKS S A, KEEVIL C W. Influence of copper surfaces on biofilm formation by Legionella pneumophila in potable water[J]. Biometals, 2015, 28(2):329-339.
    [109] MITRA D, KANG E T, NEOH K G. Antimicrobial copper-based materials and coatings:potential multifaceted biomedical applications[J]. ACS Applied Materials&Interfaces, 2020, 12(19):21159-21182.
    [110] MAERTENS L, CONINX I, CLAESEN J, et al. Copper resistance mediates long-term survival of Cupriavidus metalliduransin wet contact with metallic copper[J]. Frontiers in Microbiology, 2020, 11:1208.
    [111] O'TOOLE G, KAPLAN H B, KOLTER R. Biofilm formation as microbial development[J]. Annual Review of Microbiology, 2000, 54:49-79.
    [112] WANG J P, LI G Y, YIN H L, et al. Bacterial response mechanism during biofilm growth on different metal material substrates:EPS characteristics, oxidative stress and molecular regulatory network analysis[J]. Environmental Research, 2020, 185:109141-109151.
    [113] PARTOAZAR A, TALAEI N, BAHADOR A, et al. Antibiofilm activity of natural zeolite supported NanoZnO:inhibition of Esp gene expression of Enterococcus faecalis[J]. Nanomedicine, 2019, 14(6):675-687.
    [114] SINGH N, RAJWADE J, PAKNIKAR K M. Transcriptome analysis of silver nanoparticles treated Staphylococcus aureus reveals potential targets for biofilm inhibition[J]. Colloids and Surfaces B-Biointerfaces, 2019, 175:487-497.
    [115] LI F, CHAI Z G, SUN M N, et al. Anti-biofilm effect of dental adhesive with cationic monomer[J]. Journal of Dental Research, 2009, 88(4):372-376.
    [116] WANG Y, FAN H, WONG P K, et al. Biodegradation of tetracycline using hybrid material (UCPs-TiO2) coupled with biofilms under visible light[J]. Bioresource Technology, 2021, 323:124638.
    [117] ZHENG X, SU Y L, CHEN Y G, et al. Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity[J]. Environmental Science&Technology, 2014, 48(23):13800-13807.
    [118] ZHAO Y X, LIU D, HUANG W L, et al. Insights into biofilm carriers for biological wastewater treatment processes:current state-of-the-art, challenges, and opportunities[J]. Bioresource Technology, 2019, 288:121619.
    [119] 陈秋丽,张朝升,刘宏英,等.生物活性炭降解低浓度邻苯二甲酸酯的挂膜研究[J].中国给水排水, 2017, 33(1):12-16.
    [120] SUN Y F, QI S Y, ZHENG F P, et al. Organics removal, nitrogen removal and N2O emission in subsurface wastewater infiltration systems amended with/without biochar and sludge[J]. Bioresource Technology, 2018, 249:57-61.
    [121] HAN L N, LIU W J, CHEN M, et al. Comparison of NOM removal and microbial properties in up-flow/down-flow BAC filter[J]. Water Research, 2013, 47(14):4861-4868.
    [122] FAGBOHUNGBE M O, HERBERT B M J, HURST L, et al. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion[J]. Waste Management, 2017, 61:236-249.
    [123] YAO C, LEI H Y, YU Q, et al. Application of magnetic enhanced bio-effect on nitrification:a comparative study of magnetic and non-magnetic carriers[J]. Water Science and Technology, 2013, 67(6):1280-1287.
    [124] XU S Q, JIANG Q. Surface modification of carbon fiber support by ferrous oxalate for biofilm wastewater treatment system[J]. Journal of Cleaner Production, 2018, 194:416-424.
    [125] CHENG Y, GUO L. Treatment of municipal landfill leachate using magnetic porous ceramsite carrier[J]. Journal of Water Reuse and Desalination, 2014, 4(2):100-108.
    [126] MAO Y J, QUAN X, ZHAO H M, et al. Accelerated startup of moving bed biofilm process with novel electrophilic suspended biofilm carriers[J]. Chemical Engineering Journal, 2017, 315:364-372.
    [127] WANG T, ZHANG D, DAI L L, et al. Magnetite triggering enhanced direct interspecies electron transfer:a scavenger for the blockage of electron transfer in anaerobic digestion of high-solids sewage sludge[J]. Environmental Science&Technology, 2018, 52(12):7160-7169.
    [128] 徐恒,汪翠萍,颜锟,等.颗粒型厌氧生物膜改善高氢分压下丙酸降解抑制研究[J].中国环境科学, 2016, 36(5):1435-1441.
    [129] LI Y F, ZHU G B, NG W J, et al. A review on removing pharmaceutical contaminants from wastewater by constructed wetlands:Design, performance and mechanism[J]. Science of the Total Environment, 2014, 468:908-932.
    [130] 张云慧,朱伟,董婵.利用生物膜强化表流湿地处理农村生活污水的试验[J].湖泊科学, 2012, 24(6):838-842.
    [131] ZHANG L L, ZHAO J, CUI N X, et al. Enhancing the water purification efficiency of a floating treatment wetland using a biofilm carrier[J]. Environmental Science and Pollution Research, 2016, 23(8):7437-7443.
    [132] MANOHAR S, KIM C K, KAREGOUDAR T B. Enhanced degradation of naphthalene by immobilization of Pseudomonas sp. strain NGK1 in polyurethane foam[J]. Applied Microbiology and Biotechnology, 2001, 55(3):311-316.
    [133] MULLA S I, TALWAR M P, BAGEWADI Z K, et al. Enhanced degradation of 2-nitrotoluene by immobilized cells of Micrococcus sp. strain SMN-1[J]. Chemosphere, 2013, 90(6):1920-1924.
    [134] ZUR J, PINSKI A, MICHALSKA J, et al. A whole-cell immobilization system on bacterial cellulose for the paracetamol-degrading Pseudomonas moorei KB4 strain[J]. International Biodeterioration&Biodegradation, 2020, 149:104919.
    [135] WANG Y Y, FAN Y Z, GU J D. Dimethyl phthalate ester degradation by two planktonic and immobilized bacterial consortia[J]. International Biodeterioration&Biodegradation, 2004, 53(2):93-101.
    [136] GAO Y, ZHANG W, GAO B, et al. Highly efficient removal of nitrogen and phosphorus in an electrolysis integrated horizontal subsurface-flow constructed wetland amended with biochar[J]. Water Research, 2018, 139:301-310.
    [137] XIAO J, HUANG J, HUANG M J, et al. Application of basalt fiber in vertical flow constructed wetland for different pollution loads wastewater:performance, substrate enzyme activity and microorganism community[J]. Bioresource Technology, 2020, 318:124229.
    [138] 胡艳,胡曰利,吴晓芙,等.潜流湿地中蛭石填料对氮磷的去除效果研究[J].江苏环境科技, 2007,20(3):5-8.
    [139] 朱亮,刘钢,苗伟红,等.膨胀蛭石用于人工湿地去除氮磷的研究[J].河海大学学报(自然科学版), 2008,36(2):147-151.
    [140] ZHANG G Z, MA K, ZHANG Z X, et al. Waste brick as constructed wetland fillers to treat the tail water of sewage treatment plant[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(2):273-281.
    [141] CHYAN J M, SENORO D B, LIN C J, et al. A novel biofilm carrier for pollutant removal in a constructed wetland based on waste rubber tire chips[J]. International Biodeterioration&Biodegradation, 2013, 85:638-645.
    [142] 赵晓红,赵亚乾,杨永哲,等.铝污泥人工湿地污水处理系统小试研究[J].中国给水排水, 2015, 31(13):110-115.
    [143] 沈东平,方卫,张甜甜.城市污水厂除臭技术的应用综述[J].微生物学通报, 2009, 36(6):887-891.
    [144] 张书景,李坚,李依丽,等.恶臭假单胞菌生物滴滤塔净化甲苯废气的研究[J].环境科学, 2007,28(8):1866-1872.
    [145] KIM D J, KIM H. Degradation of toluene vapor in a hydrophobic polyethylene hollow fiber membrane bioreactor with Pseudomonas putida[J]. Process Biochemistry, 2005, 40(6):2015-2020.
    [146] KUMAR A, DEWULF J, VERCRUYSSEN A, et al. Performance of a composite membrane bioreactor treating toluene vapors:inocula selection, reactor performance and behavior under transient conditions[J]. Bioresource Technology, 2009, 100(8):2381-2387.
    [147] 叶蔚君,魏在山,郑期展.生物滴滤塔处理低浓度氮氧化物[J].化工进展, 2008,27(8):1265-1268.
    [148] 朱润晔,陈建孟,王家德.异养型生物过滤床硝化净化一氧化氮[J].环境工程学报, 2007,1(9):94-99.
    [149] 周学霞,姚伟国,杨冰雪,等.生物滴滤塔处理邻二甲苯废气研究[J].浙江大学学报(理学版), 2013, 40(1):71-75.
    [150] WEI Z S, HE Y M, HUANG Z S, et al. Photocatalytic membrane combined with biodegradation for toluene oxidation[J]. Ecotoxicology and Environmental Safety, 2019, 184:109618.
    [151] 汪凤诞,初庆东,刘强,等.陶粒填料生物滴滤塔处理二甲苯废气[J].化工环保, 2004,24(2):121-124.
    [152] 王恒颖,孙珮石,王洁,等.液相催化-生物法同时脱除烟气中SO2和NO<i>x[J].武汉理工大学学报, 2010, 32(7):98-102.
    [153] 李顺义,杨松波,李红丽,等.玉米芯填料生物过滤法净化含氨废气研究[J].高校化学工程学报, 2011, 25(2):351-355.
    [154] 席劲瑛,胡洪营,罗彬,等.不同填料生物滤塔净化城市污水厂恶臭气体研究[J].中国给水排水, 2010, 26(3):1-3.
    [155] 叶芬霞,朱瑞芬,叶央芳.复合微生物吸附除臭剂的制备及其除臭应用[J].农业工程学报, 2008,24(8):254-257.
    [156] WU Y C, CAI P, JING X X, et al. Soil biofilm formation enhances microbial community diversity and metabolic activity[J]. Environment International, 2019, 132:105116.
    [157] HE S, DING L L, WANG X, et al. Biochar carrier application for nitrogen removal of domestic WWTPs in winter:challenges and opportunities[J]. Applied Microbiology and Biotechnology, 2018, 102(22):9411-9418.
    [158] 郑丹阳,孙寓姣,赵晓辉,等.磁性纳米颗粒在环境生物技术领域的应用[J].环境科学与技术, 2017, 40(2):70-75.
    [159] KATO S, HASHIMOTO K, WATANABE K. Microbial interspecies electron transfer via electric currents through conductive minerals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(25):10042-10046.
    [160] XU S Z, XING Y H, LIU S, et al. Co-effect of minerals and Cd (Ⅱ) promoted the formation of bacterial biofilm and consequently enhanced the sorption of Cd (Ⅱ)[J]. Environmental Pollution, 2020, 258:113774.
    [161] KULCZYCKI E, FOWLE D A, FORTIN D, et al. Sorption of cadmium and lead by bacteria-ferrihydrite composites[J]. Geomicrobiology Journal, 2005, 22(6):299-310.
    [162] 韩菲,完颜华,迟毅超,等.活性炭纤维载体生物膜法处理洗车废水研究[J].环境工程学报, 2010, 4(4):751-755.
    [163] YAN M Q, WANG D S, MA X N, et al. THMs precursor removal by an integrated process of ozonation and biological granular activated carbon for typical Northern China water[J]. Separation and Purification Technology, 2010, 72(3):263-268.
    [164] 郭建宁,陈磊,张锡辉,等.臭氧/陶瓷膜对生物活性炭工艺性能和微生物群落结构影响[J].中国环境科学, 2014, 34(3):697-704.
    [165] 范晓丹,李皓璇,姬海燕,等.生物活性炭法深度处理印染废水及其生物毒性的表征[J].环境工程学报, 2015, 9(1):188-194.
    [166] 车春波,苏荣军,聂千.采用生物活性炭法对含油污水进行深度处理[J].炼油与化工, 2009, 20(1):52-53

    ,70.
    [167] 程雪敏,陈超,樊占国.抗生素制药废水的混凝和生化处理研究[J].环境保护科学, 2010, 36(2):34-37.
    [168] ZHONG H Y, WANG H, TIAN Y, et al. Treatment of polluted surface water with nylon silk carrier-aerated biofilm reactor (CABR)[J]. Bioresource Technology, 2019, 289:121617.
  • 加载中
计量
  • 文章访问数:  276
  • HTML全文浏览量:  21
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-14
  • 网络出版日期:  2022-09-02

目录

    /

    返回文章
    返回