中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于文献计量的生物质气化研究发展态势分析

郭祥 李瑞祎 张蕊 刘彬 陈冠益 侯立安

郭祥, 李瑞祎, 张蕊, 刘彬, 陈冠益, 侯立安. 基于文献计量的生物质气化研究发展态势分析[J]. 环境工程, 2022, 40(7): 232-239,131. doi: DOI:10.13205/j.hjgc.202207032
引用本文: 郭祥, 李瑞祎, 张蕊, 刘彬, 陈冠益, 侯立安. 基于文献计量的生物质气化研究发展态势分析[J]. 环境工程, 2022, 40(7): 232-239,131. doi: DOI:10.13205/j.hjgc.202207032
GUO Xiang, LI Ruiyi, ZHANG Rui, LIU Bin, CHEN Guanyi, HOU Li'an. RESEARCH ADVANCES IN BIOMASS GASIFICATION BASED ON BIBLIOMETRIC ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 232-239,131. doi: DOI:10.13205/j.hjgc.202207032
Citation: GUO Xiang, LI Ruiyi, ZHANG Rui, LIU Bin, CHEN Guanyi, HOU Li'an. RESEARCH ADVANCES IN BIOMASS GASIFICATION BASED ON BIBLIOMETRIC ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 232-239,131. doi: DOI:10.13205/j.hjgc.202207032

基于文献计量的生物质气化研究发展态势分析

doi: DOI:10.13205/j.hjgc.202207032
基金项目: 

国家重点研发计划项目"华北东北村镇资源清洁利用技术综合示范"(2020YFD1100300)

详细信息
    作者简介:

    郭祥(1989-),女,博士后,主要研究方向为生物质资源化利用。guoxiang@tju.edu.cn

    通讯作者:

    陈冠益(1970-),男,教授,主要研究方向为生物质资源化利用。chen@tju.edu.cn

RESEARCH ADVANCES IN BIOMASS GASIFICATION BASED ON BIBLIOMETRIC ANALYSIS

  • 摘要: 生物质气化是实现生物质分布式开发和能源化转化的有效途径,用途广泛灵活性强,助力清洁能源系统构建,在世界范围内得到了广泛研究与应用。采用文献计量分析结合S型曲线及可视化工具,对2001-2020年Web of Science Core数据库中"Biomass gasification"主题的12034篇研究论文进行了定量分析。结果表明:生物质气化主题研究论文以稳定的年增长率从2001年的58篇增加到2020年的1517篇;发文量的S型曲线表明:生物质气化技术在未来的15年仍有很大的创新及发展潜力;中国的累计论文发表数量最多(3201篇,占全球总发文量的26.60%),在国际合作网络中占据核心地位,而欧美国家的发文质量相对更高;关键词共现及演进路径分析表明,生物质气化副产物的高值化利用、新型气化工艺的开发(耦合工艺、化学链气化)、对碳中和的潜在贡献及"能源、火用、经济、环境"综合效益评价成为新的研究重点。
  • [1] HE Q, GUO Q H, UMEKI K, et al. Soot formation during biomass gasification:a critical review[J]. Renewable and Sustainable Energy Reviews, 2021, 139:110710.
    [2] WIJAYANTA A T, SAIFUL ALAM M, NAKASO K, et al. Optimized combustion of biomass volatiles by varying O2 and CO2 Levels:a numerical simulation using a highly detailed soot formation reaction mechanism[J]. Bioresource Technology, 2012, 110:645-651.
    [3] SIKARWAR V S, ZHAO M, CLOUGH P, et al. An overview of advances in biomass gasification[J]. Energy&Environmental Science, 2016,(9):2939-2977.
    [4] MOLINO A, LAROCCA V, CHIANESE S, et al. Biofuels production by biomass gasification:a review[J]. Energies, 2018, 11(4):811.
    [5] HOSOYA T, KAWAMOTO H, SAKA S. Pyrolysis gasification reactivities of primary tar and char fractions from cellulose and lignin as studied with a closed ampoule reactor[J]. Journal of Analytical and Applied Pyrolysis, 2008, 83(1):71-77.
    [6] LI J, JIAO L G, TAO J Y, et al. Can microwave treat biomass tar?a comprehensive study based on experimental and net energy analysis[J]. Applied Energy, 2020, 272:115194.
    [7] SAFARIAN S, UNNPÓRSSON R, RICHTER C. A review of biomass gasification modelling[J]. Renewable and Sustainable Energy Reviews, 2019, 110:378-391.
    [8] PARAJULI P B, DENG Y, KIM H, et al. Cost analysis model for syngas production cost evaluation using the graphical user interface[J]. Energy and Power, 2014, 2(4):35-40.
    [9] DELL ANTONIA D, CIVIDINO S R S, MALEV O, et al. A techno-economic feasibility assessment on small-scale forest biomass gasification at a regional level[J]. Applied Mathematical Sciences, 2014, 8:6565-6576.
    [10] WALLIN J A. Bibliometric methods:pitfalls and possibilities[J]. Basic&Clinical Pharmacology&Toxicology, 2005,(97):261-275.
    [11] MAO G Z, HU H Q, LIU X, et al. A Bibliometric analysis of industrial wastewater treatments from 1998 to 2019[J]. Environmental Pollution, 2021, 275:115785.
    [12] de BATTISTI F, SALINI S. robust analysis of bibliometric data[J]. Statistical Methods&Applications, 2013, 22(2):269-283.
    [13] HIRSCH J E. An index to quantify an individual's scientific research output that takes into account the effect of multiple coauthorship[J]. Scientometrics, 2010, 85(3):741-754.
    [14] ZOU X, YUE W L, VU H L. Visualization and analysis of mapping knowledge domain of road safety studies[J]. Accident Analysis&Prevention, 2018, 118:131-145.
    [15] 郭荣欣,杨依雯,郑旭升,等.基于Web of Science数据库的厌氧消化研究文献计量分析[J].中国沼气, 2021, 39(3):50-58.
    [16] van ECK N J, WALTMAN L. Software Survey:VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2):523-538.
    [17] 王建楠,胡志超,彭宝良,等.我国生物质气化技术概况与发展[J].农机化研究, 2010, 32(1):198-201

    , 205.
    [18] 王鹏.日本生物质应用实例和综合战略[J].洁净煤技术, 2006,(3):21-24.
    [19] MANEERUNG T, LIEW J, DAI Y J, et al. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption:kinetics, isotherms and thermodynamic studies[J]. Bioresource Technology, 2016, 200:350-359.
    [20] SHEN Y F, ZHAO P T, SHAO Q F, et al. In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification[J]. Applied Catalysis B:Environmental, 2014, 152/153:140-151.
    [21] AL-RAHBI A S, WILLIAMS P T. Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char[J]. Applied Energy, 2017, 190:501-509.
    [22] SHAYAN E, ZARE V, MIRZAEE I. Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents[J]. Energy Conversion and Management, 2018, 159:30-41.
    [23] ALNOUSS A, MCKAY G, AL-ANSARI T. Production of syngas via gasification using optimum blends of biomass[J]. Journal of Cleaner Production, 2020, 242:118499.
    [24] WANG J J, YANG K, XU Z L, et al. Energy and exergy analyses of an integrated CCHP System with biomass air gasification[J]. Applied Energy, 2015, 142:317-327.
    [25] ELLIS N, MASNADI M S, ROBERTS D G, et al. Mineral matter interactions during co-pyrolysis of coal and biomass and their impact on intrinsic char co-gasification reactivity[J]. Chemical Engineering Journal, 2015, 279:402-408.
    [26] MASNADI M S, GRACE J R, BI X T, et al. From fossil fuels towards renewables:inhibitory and catalytic effects on carbon thermochemical conversion during co-gasification of biomass with fossil fuels[J]. Applied Energy, 2015, 140:196-209.
    [27] ABDOULMOUMINE N, ADHIKARI S, KULKARNI A, et al. A review on biomass gasification syngas cleanup[J]. Applied Energy, 2015, 155:294-307.
    [28] AHRENFELDT J, THOMSEN T P, HENRIKSEN U, et al. Biomass gasification cogeneration-a review of state of the art technology and near future perspectives[J]. Applied Thermal Engineering, 2013, 50(2):140714-140717.
    [29] ANEX R P, ADEN A, KAZI F K, et al. Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways[J]. Fuel, 2010, 89:S29-35.
    [30] ANTONIOU N, MONLAU F, SAMBUSITI C, et al. Contribution to circular economy options of mixed agricultural wastes management:coupling anaerobic digestion with gasification for enhanced energy and material recovery[J]. Journal of Cleaner Production, 2019, 209:505-514.
    [31] GUO X, ZHANG Y B, GUO Q Q, et al. Evaluation on energetic and economic benefits of the coupling anaerobic digestion and gasification from agricultural wastes[J]. Renewable Energy, 2021, 176:494-503.
    [32] CHEN G Y, GUO X, CHENG Z J, et al. Air gasification of biogas-derived digestate in a downdraft fixed bed gasifier[J]. Waste Management, 2017, 69:162-169.
    [33] CHEN G Y, GUO X, LIU F, et al. Gasification of lignocellulosic biomass pretreated by anaerobic digestion (AD) process:an experimental study[J]. Fuel, 2019, 247:324-333.
    [34] FUNKE A, MUMME J, KOON M, et al. Cascaded production of biogas and hydrochar from wheat straw:energetic potential and recovery of carbon and plant nutrients[J]. Biomass and Bioenergy, 2013, 58:229-237.
    [35] YANG Z Y, LIU Y, ZHANG J, et al. Improvement of biofuel recovery from food waste by integration of anaerobic digestion, digestate pyrolysis and syngas biomethanation under mesophilic and thermophilic conditions[J]. Journal of Cleaner Production, 2020, 256:120594.
    [36] SARAFRAZ M M, CHRISTO F C. Thermodynamic assessment and techno-economic analysis of a liquid indium-based chemical looping system for biomass gasification[J]. Energy Conversion and Management, 2020, 225:113428.
    [37] 吴志强,张博,杨伯伦.生物质化学链转化技术研究进展[J].化工学报, 2019, 70(8):2835-2853.
  • 加载中
计量
  • 文章访问数:  149
  • HTML全文浏览量:  12
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-17
  • 网络出版日期:  2022-09-02

目录

    /

    返回文章
    返回