Yu Changwu Gao Chao Wang Lin, . ADSORPTION PERFORMANCE OF MOLYBDENUM ONTO HUMUS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 10-14. doi: 10.13205/j.hjgc.201506003
Citation:
Yu Changwu Gao Chao Wang Lin, . ADSORPTION PERFORMANCE OF MOLYBDENUM ONTO HUMUS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 10-14. doi: 10.13205/j.hjgc.201506003
Yu Changwu Gao Chao Wang Lin, . ADSORPTION PERFORMANCE OF MOLYBDENUM ONTO HUMUS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 10-14. doi: 10.13205/j.hjgc.201506003
Citation:
Yu Changwu Gao Chao Wang Lin, . ADSORPTION PERFORMANCE OF MOLYBDENUM ONTO HUMUS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 10-14. doi: 10.13205/j.hjgc.201506003
ADSORPTION PERFORMANCE OF MOLYBDENUM ONTO HUMUS
Abstract
The adsorption of molybdenum onto humus was studied by simulation. pH,time,temperature,dosing quantity and
competitive anions were investigated during adsorption process. The adsorption mechanism was researched by the method of
adsorption isotherm and kinetic model. The results showed that the removal efficiency of molybdenum from solution attached
90% at least,with pH < 3,adsorptim time of 30 min,humus dosage 1 g,and a temperature of 25 ~ 30 ℃. The equilibrium
adsorption capacity was 1. 014 mg/g at the optimum conditions. Phosphate appeared to compete strongly with MoO2 -
4 and the
removal efficiency of molybdenum decreased from over 90% to 60% or so. Silicate and sulfate did a negligible effect on the
sorption of MoO2 -
4 . The Langmuir isotherm adsorption model and the pseudo second-order rate equation could fit the
experimental data well. It meant that adsorption molybdenum onto humus was chemical adsorption and was controlled by
chemical reactor. The conclusion showed that humus could be applied in adsorption of molybdenum in the future.
References
Relative Articles
[1] PAN Xia, YE Shufan, ZHENG Xiaocha, MA Tingting. PURIFICATION EFFECT OF FOUR PLANT COMBINATIONS ON COMBINED WATER POLLUTION OF EUTROPHICATION AND HEAVY METALS [J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 69-75. doi: 10.13205/j.hjgc.202307010
[2] QI Xiaoxue, ZHANG Chen, YU Jianghua. PREPARATION OF PUMICE BASED ON CONSTRUCTION WASTE AND ITS ADSORPTION PERFORMANCE ON HEAVY METALS [J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 171-177. doi: 10.13205/j.hjgc.202208024
[3] WU Yan-xia, LIANG Hai-long, CHEN Xin, CHEN Chen, WANG Xian-zhong, CHEN Yu-feng, DAI Chang-you, HU Li-ming. EFFECT OF ZrO2 DOPING ON DENITRIFICATION PERFORMANCE OF V2 O5 -MoO3 /TiO2 CATALYSTS [J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 107-112,119. doi: 10.13205/j.hjgc.202005019
[4] ZHANG Yong-ping, WANG Gang, XU Min, SONG Xiao-san. PREPARATION OF MERCAPTOACETYL CORN STRAW, A Cd(Ⅱ) ADSORBENT [J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 116-122. doi: 10.13205/j.hjgc.202003020
[14] Liu Qian, Fu Lili, Sun Jiajun, Li Fengda, Jiang Binhui. SCREENING,CULTURING OF A STRAIN OF FLOCCULANT-PRODUCING
BACTERIA AND REMOVAL OF HEAVY METALS FROM WASTEWATER [J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 63-66. doi: 10.13205/j.hjgc.201506014
[15] Luo Ting, Jiang Zhenmao, Ren Zhijie, Zhou Meizhu, Zhou Hongguang. PREPARATION AND PERFORMANCE OF RESIN BASED NANOSCALE ZERO VALENT IRON COMPOSITES FOR REMOVAL OF Pb( Ⅱ) IN WATER SOLUTION [J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 1-4. doi: 10.13205/j.hjgc.201505001
[16] Kang Haiyan Yang Zhiguang Huang Xiaonan, . REMOVAL OF HEAVY METALS USING NANOSCALE ZERO-VALENT IRON
IMMOBILIZED BY SODIUM ALGINATE/β-CYCLODEXTRIN [J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 144-147. doi: 10.13205/j.hjgc.201506032
[17] Gu Chao Liang Longchao Chen Zhuo, . STUDY ON PHYTOREMEDIATION OF HEAVY METALS IN THE SEDIMENTS OF
HONGFENG LAKE BY FOUR SPECIES OF PASTURE GRASS [J]. ENVIRONMENTAL ENGINEERING , 2015, 33(7): 148-151?.
Cited by Periodical cited type(2) 1. 孙琳,刘志雄,罗文波,罗忆婷,李秉轩. Mn_3O_4@SiO_2核壳磁性复合材料对钼(Ⅵ)的吸附性能. 精细化工. 2019(08): 1677-1683 . 2. 易彩霞,王帅,吉凡,李翠兰,张晋京. 黑钙土胡敏素结构特征及对Cu~(2+)吸附热力学研究. 吉林农业大学学报. 2019(05): 577-584 .
Other cited types(4)
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 0 10 20 30 40
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 25.1 % FULLTEXT : 25.1 % META : 74.9 % META : 74.9 % FULLTEXT META
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 8.0 % 其他 : 8.0 % China : 0.3 % China : 0.3 % 上海 : 0.3 % 上海 : 0.3 % 北京 : 2.1 % 北京 : 2.1 % 南平 : 0.6 % 南平 : 0.6 % 厦门 : 0.3 % 厦门 : 0.3 % 台州 : 5.0 % 台州 : 5.0 % 成都 : 0.6 % 成都 : 0.6 % 扬州 : 0.6 % 扬州 : 0.6 % 无锡 : 2.4 % 无锡 : 2.4 % 杭州 : 5.0 % 杭州 : 5.0 % 沈阳 : 2.4 % 沈阳 : 2.4 % 温州 : 0.3 % 温州 : 0.3 % 漯河 : 2.1 % 漯河 : 2.1 % 濮阳 : 0.6 % 濮阳 : 0.6 % 绵阳 : 0.3 % 绵阳 : 0.3 % 芒廷维尤 : 29.8 % 芒廷维尤 : 29.8 % 苏州 : 1.2 % 苏州 : 1.2 % 莆田 : 0.6 % 莆田 : 0.6 % 莱芜 : 0.3 % 莱芜 : 0.3 % 衢州 : 3.5 % 衢州 : 3.5 % 西宁 : 30.4 % 西宁 : 30.4 % 达州 : 0.3 % 达州 : 0.3 % 重庆 : 0.3 % 重庆 : 0.3 % 钦州 : 0.3 % 钦州 : 0.3 % 阳泉 : 2.7 % 阳泉 : 2.7 % 其他 China 上海 北京 南平 厦门 台州 成都 扬州 无锡 杭州 沈阳 温州 漯河 濮阳 绵阳 芒廷维尤 苏州 莆田 莱芜 衢州 西宁 达州 重庆 钦州 阳泉