Wang Hai, Zhang Fengzhen, Wang Chengduan, Liu Xingyong, Chen Yanyu, Yuan Jigang. SIMULATION AND ANALYSIS OF MVR TECHNOLOGY IN THE TREATMENTOF HYPERSALINE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 35-37. doi: 10.13205/j.hjgc.201510008
Citation:
Wang Hai, Zhang Fengzhen, Wang Chengduan, Liu Xingyong, Chen Yanyu, Yuan Jigang. SIMULATION AND ANALYSIS OF MVR TECHNOLOGY IN THE TREATMENT
OF HYPERSALINE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 35-37. doi: 10.13205/j.hjgc.201510008
Wang Hai, Zhang Fengzhen, Wang Chengduan, Liu Xingyong, Chen Yanyu, Yuan Jigang. SIMULATION AND ANALYSIS OF MVR TECHNOLOGY IN THE TREATMENTOF HYPERSALINE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 35-37. doi: 10.13205/j.hjgc.201510008
Citation:
Wang Hai, Zhang Fengzhen, Wang Chengduan, Liu Xingyong, Chen Yanyu, Yuan Jigang. SIMULATION AND ANALYSIS OF MVR TECHNOLOGY IN THE TREATMENT
OF HYPERSALINE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 35-37. doi: 10.13205/j.hjgc.201510008
SIMULATION AND ANALYSIS OF MVR TECHNOLOGY IN THE TREATMENT
OF HYPERSALINE WASTEWATER
Abstract
The process of MVR technology combined with evaporation crystallization technology in treatment of hypersaline
wastewater was modelled and simulated, and the calculated results were in good agreement with experimental data.
Meanwhile,the effect of compression ratio and operating pressure on the COP and the heat transfer temperature difference in
forced circulation heater were analyzed. The optimum conditions were obtained: Compression ratio was 1. 7 ~ 2 and the
operating pressure was 45 ~ 60 kPa. The study results had a guiding significance on optimizing the process parameters of MVR
evaporation crystallization system and realizing the zero discharge of hypersaline wastewater.
References
Relative Articles
[1] QIAO Haibing, LI Guirong, PENG Feng, HAO Rukun, DIAO Yanfang, LI Chensheng, SUN Chengcai, CHEN Yongxin. PERFORMANCE OF SUBMERGED PLANTS COUPLED WITH BENTHIC ANIMALS IN REMOVING POLLUTANTS FROM WATER BODY SEDIMENTS [J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 73-78. doi: 10.13205/j.hjgc.202412010
[2] JIANG Zhiqian, LI Xuan, GAO Bei, JIA Zongcheng, ZHAO Yan. PREPARATION OF A LEAF-PVDF MATERIAL AND INVESTIGATION OF ITS OIL-ABSORBING PROPERTY [J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 193-200. doi: 10.13205/j.hjgc.202412023
[3] LIU Dong, QI Junwen, XU Zunzhu, ZHANG Jiwen, JIN Xiaoxian, LI Jiansheng. ADSORPTION PERFORMANCE OF TOLUENE ON HYDROPHOBIC MODIFIED MOLECULAR SIEVES UNDER HIGH HUMIDITY [J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 66-72,81. doi: 10.13205/j.hjgc.202302010
[4] FEI Bo, ZHANG Gangfeng, BU Mengya, LI Xiangdong. ADSORPTION AND DESORPTION PERFORMANCE OF HONEYCOMB ACTIVATED CARBON AND ZEOLITE MOLECULAR SIEVE FOR VOCs EXHAUST GAS FROM COATING [J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 90-96. doi: 10.13205/j.hjgc.202303012
[5] LI Xiu, DOU Peilin, ZHAO Shifa. DESIGN AND DRAINAGE PERFORMANCE ANALYSIS OF VORTEX SUCTION FLOATING GARBAGE COLLECTORS [J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 228-232,241. doi: 10.13205/j.hjgc.202308029
[6] ZHU Yongqiang, FANG Mingming, XU Tingting, XU Mengya, LIAO Hua, ZHANG Zhanjun. CONSTRUCTION AND EFFECT OF COMBINED IN-SITU ECOLOGICAL RESTORATION SYSTEM FOR URBAN BLACK AND ODOROUS RIVER WATER: A CASE STUDY IN A BLACK AND ODOROUS RIVER IN SHANGHAI [J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 240-247. doi: 10.13205/j.hjgc.202301029
[7] LING Xiao-jia, DONG Wan-jun, LEI Bin, DONG Bo, XU Kai-xiang, WU Chang-jian. THE PERFORMANCE OF WATER HYACINTH DETECTED BY FLOATING PLANT RADAR [J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 92-96. doi: 10.13205/j.hjgc.202012016
[8] ZHANG Min, TASHIRO Yu-kihiro, SAKAI Ken-ji. OXYGEN SUPPLY PERFORMANCE OF GAS-INDUCING AGITATOR SYSTEM FOR AUTOTHERMAL THERMOPHILIC AEROBIC DIGESTION PROCESS [J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 8-12. doi: 10.13205/j.hjgc.202008002
[9] CHEN Jin-huan, TANG Jia-wen, WANG Kai-nan, ZHANG Qiu-zhuo. APPLICATION OF AQUATIC PLANTS COMMUNITY BUILDING TECHNOLOGY IN EUTROPHIC WATER RESTORATION [J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 105-112,135. doi: 10.13205/j.hjgc.202008018
[15] Zhu Dongbo, Li Lingmi, Li Xinhong, Liu Yupeng, Sun Guogang, Zhou Xin. RESEARCH ON ADSORPTION OF ORGANIC COMPOUNDS FROM AQUEOUS
SOLUTIONS BY HYDROPHOBIC SiO2 AEROGEL [J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 25-28. doi: 10.13205/j.hjgc.201503006
[16] Wang Yayan, Zhang Jiangang, Ni Pengping, Li Mengying, Yu Yingjie, Zhang Lingling, Xu Yuliang, Cai Cong, Xie Liqun. APPLICATION RESEARCHES ON IN-SITU ECOLOGICAL RESTORATION
TECHNOLOGY IN POLLUTED URBAN RIVER [J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 11-16. doi: 10.13205/j.hjgc.201503003
[17] Xu Wei Li Yong Tang Chuanxiang Chen Xiangbin Li Huijuan Xiong Daowen Yu Shaoqin, . EXPERIMENT OF A NEW AERATION SYSTEM USED IN MBR INTEGRATION EQUIPMENT [J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 10-14. doi: 10.13205/j.hjgc.201510003
[18] Chen Zefang, Yang Xunan, Wu Qunhe. COMPARISON OF OIL SORPTION CAPACITY BETWEEN HYDROPHYTE AND
TRADITIONAL VEGETABLE SORBENTS [J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 50-55. doi: 10.13205/j.hjgc.201503010
Cited by Periodical cited type(14) 1. 雒月云,毛怡心,庄思琪,邓富昌,侯敏,唐宋,姚孝元. 北京市不同季节室外细菌气溶胶分布特征及其环境影响因素分析. 环境科学研究. 2022(02): 556-565 . 2. 王刘铭,邓超,钟兰頔. 2020年南昌市大气污染特征与潜在源区. 气象与减灾研究. 2021(04): 290-298 . 3. 何仁江,韩知峡,柏珺,薛京舟,肖开煌,张青碧. 泸州城区大气细颗粒物时空分布特征及变化规律. 西南大学学报(自然科学版). 2020(01): 88-94 . 4. 白莉,温轩,徐昭炜. 北京市大气环境评价及污染物时空分布. 绿色环保建材. 2020(03): 47-49 . 5. 高硕晗,陶双成,熊新竹,黄山倩,李娜. 北方地区典型高速公路近路区域大气污染特征研究. 生态环境学报. 2019(06): 1168-1174 . 6. 尚媛媛,郑小波,夏晓玲,宋丹. 贵阳市PM_(2.5)分布特征及气象条件的影响. 高原山地气象研究. 2018(03): 45-50 . 7. 卢月明,王亮,仇阿根,张用川,赵阳阳. 一种基于主成分分析的协同克里金插值方法. 测绘通报. 2017(11): 51-57+63 . 8. 周俊佳,梁娟珠. 福州市区大气污染物质量浓度时空分布特征分析. 环境工程. 2017(02): 89-93+173 . 本站查看 9. 赵阳,胡恭任,于瑞莲,陆成伟,樊孝俊,黄灵光,刘海婷. 2013年南昌市区PM_(2.5)的浓度水平及时空分布特征与来源. 环境科学研究. 2017(06): 854-863 . 10. 熊新竹,陶双成,高硕晗,姚嘉林,孔亚平. 北京典型主城区冬季大气污染特征分析. 生态环境学报. 2017(07): 1167-1173 . 11. 宋杰,关茗洋,陈浪,陈凤格. 2013-2015年石家庄市臭氧时空分布特征及与居民每日呼吸系统疾病急救的关系. 医学动物防制. 2017(08): 859-862 . 12. 史云洁,王沛,马姗婕,王鑫,何梅. 大气细颗粒物对实验动物氧化应激及炎症反应研究进展. 中国公共卫生. 2017(01): 35-38 . 13. 程念亮,李云婷,孙峰,李金香,程兵芬,李红霞,邱启鸿. 北京市重大活动空气质量评估技术体系. 安徽农业科学. 2016(29): 44-46+50 . 14. 程念亮,李云婷,孙峰,张大伟,徐文帅,王欣,邱启鸿,董欣,孟凡,李红霞. 北京市大气PM_(2.5)监测·模拟和评估技术. 安徽农业科学. 2016(34): 85-89 .
Other cited types(10)
Proportional views
Created with Highcharts 5.0.7 Amount of access Chart context menu Abstract Views, HTML Views, PDF Downloads Statistics Abstract Views HTML Views PDF Downloads 2024-05 2024-06 2024-07 2024-08 2024-09 2024-10 2024-11 2024-12 2025-01 2025-02 2025-03 2025-04 0 2.5 5 7.5 10
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 13.6 % FULLTEXT : 13.6 % META : 86.4 % META : 86.4 % FULLTEXT META
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 16.1 % 其他 : 16.1 % China : 0.8 % China : 0.8 % 上海 : 1.7 % 上海 : 1.7 % 北京 : 3.4 % 北京 : 3.4 % 南充 : 2.5 % 南充 : 2.5 % 台州 : 0.8 % 台州 : 0.8 % 大连 : 1.7 % 大连 : 1.7 % 太原 : 0.8 % 太原 : 0.8 % 湖州 : 0.8 % 湖州 : 0.8 % 芒廷维尤 : 64.4 % 芒廷维尤 : 64.4 % 芝加哥 : 0.8 % 芝加哥 : 0.8 % 苏州 : 0.8 % 苏州 : 0.8 % 西宁 : 4.2 % 西宁 : 4.2 % 重庆 : 0.8 % 重庆 : 0.8 % 其他 China 上海 北京 南充 台州 大连 太原 湖州 芒廷维尤 芝加哥 苏州 西宁 重庆