[1] | LIU Baocun, ZHOU Jiti, JIN Ruofei, TIAN Tian, CUI Tiantian. ALKALINE-THERMAL HYDROLYSIS OF SEWAGE SLUDGE DIGESTATE AND ITS PERFORMANCE IN ANAEROBIC FERMENTATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 166-173. doi: 10.13205/j.hjgc.202309020 |
[2] | TANG Qi, KONG Jun, ZHOU Chenqi, CHEN Weilun. FEASIBILITY PREDICTION OF HOURLY LOW SALT WATER INTAKE IN ESTUARY BASED ON LOGISTIC METHOD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 42-47. doi: 10.13205/j.hjgc.202206005 |
[3] | WANG Yingda, LI Xun, WU Xiaowen, LUO Lin, WANG Feng, WANG Weiming. FEASIBILITY EVALUATION SYSTEM FOR DOMESTIC WASTE LANDFILL MINING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 181-187,202. doi: 10.13205/j.hjgc.202203027 |
[4] | HE Wen-shan, ZHANG Ru, LI Si-qi, LI Wen-jin, SONG Zhe-hua, PENG Guang, SHEN Peng, WANG Xiao-hui. SCREENING OF A CHLORTETRACYCLINE-DEGRADING STRAIN AND ITS DEGRADATION CONDITIONS OPTIMIZATION USING RESPONSE SURFACE METHODOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 53-58,66. doi: 10.13205/j.hjgc.202205008 |
[5] | XIONG Ying, BAI Dong-rui, ZHANG Tao, LIU Yi, LIU Yan-ting, CHEN Tan, WANG Hong-tao, YANG Ting, JIN Jun, ZHOU Ping, GUO Fang. FEASIBILITY INVESTIGATION ON AEROBIC COMPOSTING OF MUNICIPAL SLUDGE SUPPLEMENTED WITH LESS PROPORTION OF GREEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 153-160. doi: 10.13205/j.hjgc.202103022 |
[6] | PAN Jia-cheng, MIU Xin-nian, CHENG Cheng, SONG Jia-jun, LIU Wen-ru, SHEN Yao-liang. FEASIBILITY OF PHOSPHORUS REMOVAL BY DENITRIFYING BY ABR PHASE SEPARATION AND MBR COUPLING PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 63-68,167. doi: 10.13205/j.hjgc.202003011 |
[7] | SUN Jin-feng, WANG Shao-kun, YANG Zhi-yong, HU Long, HU Yong-liang. FEASIBILITY STUDY ON TOILET BLACK WATER SOURCE SEPARATED TREATMENT BASED ON HYDROTHERMAL CARBONIZATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 1-5. doi: 10.13205/j.hjgc.202012001 |
[13] | Liu Qian, Fu Lili, Sun Jiajun, Li Fengda, Jiang Binhui. SCREENING,CULTURING OF A STRAIN OF FLOCCULANT-PRODUCING BACTERIA AND REMOVAL OF HEAVY METALS FROM WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 63-66. doi: 10.13205/j.hjgc.201506014 |