[1] | LÜ Wenxin, LUAN Pengpeng, ZHOU Hui, WANG Jinglan, HE Sirong, CHENG Zhanjun, LI Ning, YAN Beibei, CHEN Guanyi. PYROLYSIS CHARACTERISTICS AND KINETIC ANALYSIS OF COMMON PLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 110-118. doi: 10.13205/j.hjgc.202401015 |
[2] | HAO Jingyu, CHEN Shuxian, CHEN Xiang, WANG Xiankai, WANG Hang, HUA Yu, DAI Xiaohu. APPLICATION AND PROSPECTS OF PYROLYSIS CARBONIZATION TECHNOLOGY IN SLUDGE TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 261-275. doi: 10.13205/j.hjgc.202409026 |
[3] | SONG Zhanlong, TAO Shuanghua, XU Baolin, ZHAO Xiqiang, SUN Jing, MAO Yanpeng, WANG Wenlong, YU Jun. HEAT TRANSFER SIMULATION AND ENERGY ANALYSIS OF RADIATIVE PYROLYSIS OF OILY SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 73-81. doi: 10.13205/j.hjgc.202402009 |
[4] | GUO Jiangshan, GU Weihua, BAI Jianfeng, DONG Bin, ZHUANG Xuning, ZHAO Jing, WANG Jingwei. EFFECT OF CO-PYROLYSIS OF SEWAGE SLUDGE AND Ca(H2PO4)2 ON RESIDUE CHARACTERISTIC AND CHROMIUM STABILITY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 45-50,88. doi: 10.13205/j.hjgc.202203008 |
[5] | ZHOU Yang, JIN Baosheng. PYROLYSIS PERFORMANCE AND EVOLVED GAS ANALYSIS OF MIXED SEWAGE SLUDGE CONTAINING KITCHEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 80-87,175. doi: 10.13205/j.hjgc.202210011 |
[6] | ZHANG Qing-yi, LIU Chang-qing, WU Chun-shan, ZHENG Yu-yi, ZHUO Gui-hua. EFFECT OF PYROLYSIS TIME ON PAHS CONTENT AND TOXICITY IN SLUDGE-BASED BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 129-135. doi: 10.13205/j.hjgc.202110018 |
[7] | WU Qin-yue, LIU He, ZHENG Wei, LIU Hong-bo, ZHENG Zhi-yong, ZHANG Yan, ZHANG Cui-cui. PREPARATION OF BIOCHAR BY PYROLYSIS OF PHARMACEUTICAL SLUDGE AND ITS ADSORPTION PERFORMANCE IN TREATING PHARMACEUTICAL WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 103-109. doi: 10.13205/j.hjgc.202111013 |
[8] | XU Si-han, WANG Min-yan, ZHANG Jin, DIAO Han-jie, LI Yan-ming, SHAN Sheng-dao, CAO Yu-cheng. EFFECT OF PYROLYSIS TIME ON CHARACTERISTICS AND HEAVY METAL ECOLOGICAL RISKS IN BIOCHAR MADE FROM WASTEWATER SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 162-167. doi: 10.13205/j.hjgc.202003027 |
[9] | ZHAO Hong-yan, ZHOU Ji-ti, JIN Ruo-fei, WANG Qing-xuan, ZHANG Ye, LIU Jia-xuan. CONDITION OPTIMIZATION FOR DYNAMIC EXPERIMENTS OF THERMAL ALKALINE CRACKING SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 71-74,121. doi: 10.13205/j.hjgc.202007011 |
[17] | Zhang Lei Zhang Yongli Liang Ying, . EXPERIMENTAL STUDY ON TREATMENT OF WATER-BASED INK WASTEWATER
BY COAGULATION-BAF[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 1-3. doi: 10.13205/j.hjgc.201504001 |
[18] | Yang Penghui Wei Jun Qu Chengtun, . VACUUM PYROLYSIS OF OIL SLUDGE FROM YANCHANG OILFIELD[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 101-103. doi: 10.13205/j.hjgc.201510022 |